A PRELIMINARY SURVEY OF NOISE LEVELS IN UK SECONDARY SCHOOLS

R. Conetta and B. Shield
London South Bank University, London, UK

T. Cox
University of Salford, Salford, UK

J. Dockrell and D. Connolly
Institute of Education, University of London, London, UK
Identifying a sound environment for secondary schools

Outline

• Background
• Overview of pilot study
• Results
• Factors affecting lesson noise levels
• Conclusions and further work
Background

• Noise and poor acoustics have a detrimental effect upon teaching, learning and teachers’ health.

• Far less is known about the acoustic quality of secondary schools and the impact of noise and poor acoustics upon children of secondary school age (11-18 years old).

• A research project is currently being undertaken which aims to investigate the current acoustic environment and its effect on pupils and teachers in secondary schools in the UK.
Identifying a sound environment for secondary schools (ISESS)

• Noise and acoustic surveys of secondary schools.

• Questionnaire surveys of pupils and teachers.

• Cognitive testing of pupils in various noise and acoustic conditions.

• Measurement of other environmental parameters in classrooms.
Overview of pilot study

<table>
<thead>
<tr>
<th>School</th>
<th>Gender</th>
<th>Age range</th>
<th>No. of pupils</th>
<th>Dates of building</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Female (mixed 6th form)</td>
<td>11-18</td>
<td>1000</td>
<td>1940 - 2009</td>
</tr>
<tr>
<td>2</td>
<td>Mixed</td>
<td>11-16</td>
<td>1100</td>
<td>1950 - 2000</td>
</tr>
<tr>
<td>3</td>
<td>Mixed</td>
<td>11-18</td>
<td>1000</td>
<td>1960 - 1990</td>
</tr>
<tr>
<td>4</td>
<td>Mixed</td>
<td>11-16</td>
<td>500</td>
<td>1960</td>
</tr>
</tbody>
</table>

- Suburban locations.
- None were affected by significant levels of environmental noise, such as road traffic or aircraft noise.
Overview of pilot study

- Maths
- English
- Science
- Design and Technology
- PE (Physical Education)

- 21 classrooms surveyed
- 76 lessons measured and observed
Overview of pilot study

- Norsonics N140 sound analyser
- Measurement height = 1.2m

- Indoor ambient noise level (unoccupied)
- Lesson noise level (occupied)
- Reverberation time (unoccupied)
- STI (unoccupied)

- Lesson activities
- Other factors, room volume, number of pupils, age of pupils, time of day etc
Overview of pilot study

- Norsonics N140 sound analyser
- Measurement height = 1.2m

- Indoor ambient noise level (unoccupied)
- Lesson noise level (occupied)
- Reverberation time (unoccupied)
- STI (unoccupied)

- Lesson activities
- Other factors, room volume, number of pupils, age of pupils, time of day etc
Identifying a sound environment for secondary schools

Noise level results
Indoor ambient noise level (unoccupied)

- Maths
- English
- Science
- Design and Technology
- PE

dB LAeq

School 1 School 2 School 3 School 4
Indoor ambient noise level (unoccupied)

![Bar chart showing indoor ambient noise levels for different subjects and schools.](chart.png)
Indoor ambient noise level (unoccupied)

- Maths
- English
- Science
- Design and Technology
- PE

Schools:
- School 1
- School 2
- School 3
- School 4

dB LAeq

School 1 School 2 School 3 School 4

Maths English Science Design and Technology

Identifying a sound environment for secondary schools

ww1.lsbu.ac.uk/ISESS
Lesson Noise Level (occupied)

• Lesson noise level is the average noise level generated by the dominant activity of the lesson.

• Excluding any activities unrelated to the lesson itself, such as pupils entering or leaving the classroom.

• Made at a location in the room chosen to minimise disruption to teaching.
Average Lesson Noise (occupied) (dB LA_{eq})

<table>
<thead>
<tr>
<th>Subject</th>
<th>School 1</th>
<th>School 2</th>
<th>School 3</th>
<th>School 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maths</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>English</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design and Technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

School 1 School 2 School 3 School 4
Lesson activities

- 20 activities
- 6 categories

Activity

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Individual work</td>
</tr>
<tr>
<td>2</td>
<td>Instruction/Discussion</td>
</tr>
<tr>
<td>3</td>
<td>Group Work</td>
</tr>
<tr>
<td>4</td>
<td>Science experiment</td>
</tr>
<tr>
<td>5</td>
<td>Design and Technology (practical)</td>
</tr>
<tr>
<td>6</td>
<td>Sports</td>
</tr>
</tbody>
</table>

Lesson Noise Level

- Error Bars show 95.0% CI of Mean
- Bars show Means

- Individual work: 56 (n=8)
- Instruction/Discussion: 59 (n=36)
- Group Work: 65 (n=7)
- Science experiment: 68 (n=3)
- Design and Technology (practical): 69 (n=9)
- Sports: 77 (n=13)
Factors affecting lesson noise levels

• Lesson noise levels increased with increasing indoor ambient noise level within some subject areas.

• Lesson noise levels were higher in classrooms with longer reverberation times.

• Lesson noise levels were higher in classrooms with a lower STI, and lower in rooms with a higher STI.

• The number and age of pupils in the classroom had an effect on lesson noise levels.
Indoor Ambient Noise Level (English)
Factors affecting lesson noise levels

• Lesson noise levels increased with increasing indoor ambient noise level within some subject areas.

• Lesson noise levels were higher in classrooms with longer reverberation times.

• Lesson noise levels were higher in classrooms with a lower STI, and lower in rooms with a higher STI.

• The number and age of pupils in the classroom had an effect on lesson noise levels.
Number and age of pupils

- Lesson noise levels at Key Stage 5 were lower than at Key Stages 3 and 4.

<table>
<thead>
<tr>
<th>Key Stage 3</th>
<th>11-14 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Stage 4</td>
<td>15-16 years</td>
</tr>
<tr>
<td>Key Stage 5</td>
<td>17-18 years</td>
</tr>
</tbody>
</table>
Number and age of pupils

- Lesson noise levels at Key Stage 5 were lower than at Key Stages 3 and 4.
- As the number of pupils in a lesson increased the lesson noise levels increased.

<table>
<thead>
<tr>
<th>Key Stage 3</th>
<th>11-14 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Stage 4</td>
<td>15-16 years</td>
</tr>
<tr>
<td>Key Stage 5</td>
<td>17-18 years</td>
</tr>
</tbody>
</table>

![Bar chart showing lesson noise levels across Key Stages 3, 4, and 5]
Conclusions and further work

• Quietest lessons: Maths and English
• Noisiest lessons: PE
• Lesson noise levels influenced by the classroom activity.
 – Quietest activity: Individual work
 – Noisiest activity: Sports
 – Most common activity: Instruction/Discussion
• A number of factors appear to be related to the lesson noise level.
• Ongoing data collection in a range of schools.
• Further analysis of the relationship between room acoustics and lesson noise levels.
Acknowledgements

Thank you to the schools, pupils and teachers that took part in this pilot study.

The ISESS project is funded by the Engineering and Physical Sciences Research Council

Contacts

London South Bank University,
Acoustics research centre,
Faculty of Engineering Science and Built Environment.

Robert Conetta: conettar@lsbu.ac.uk
Bridget Shield: shieldbm@lsbu.ac.uk