Water structure and science
(http://www1.lsbu.ac.uk/water/ref26.html)

Water Structure and Science, References 2501 - 2600

link 1 - 100
link 101 - 200
link 201 - 300
link 301 - 400
link 401 - 500
link 501 - 600
link 601 - 700
link 701 - 800
link 801 - 900
link 901 - 1000
link 1001 - 1100
link 1101 - 1200
link 1201 - 1300
link 1301 - 1400
link 1401 - 1500
link 1501 - 1600
link 1601 - 1700
link 1701 - 1800
link 1801 - 1900
link 1901 - 2000
link 2001 - 2100
link 2101 - 2200
link 2201 - 2300
link 2301 - 2400

link 2401 - 2500

  1. F. Lehmkühler, Y. Forov, T. Büning, C. J. Sahle, I. Steinke, K. Julius, T. Buslaps, M. Tolan, M. Hakala and C. Sternemann, Intramolecular structure and energetics in supercooled water down to 255 K, Physical Chemistry Chemical Physics, 18 (2016) 6925. [Back]
  2. I. Nezbeda, F. Moüka and W. R. Smith, Recent progress in molecular simulation of aqueous electrolytes: Force fields, chemical potentials and solubility, arXiv:1602.04065v1 [cond-mat.soft] 12 Feb 2016. [Back]
  3. N. Q. Vinh, M. S. Sherwin, S. J. Allen, D. K. George, A. J. Rahman and K. W. Plaxco, High-precision gigahertz-to-terahertz spectroscopy of aqueous salt solutions as a probe of the femtosecond-to-picosecond dynamics of liquid water Journal of Chemical Physics,142 (2015) 164502. [Back]
  4. M. Ahmed, A. K. Singh and J. A. Mondal, Hydrogen-bonding and vibrational coupling of water in a hydrophobic hydration shell as observed by Raman-MCR and isotopic dilution spectroscopy, Physical Chemistry Chemical Physics, 18 (2016) 2767-2775. [Back]
  5. V. Holten and M. A. Anisimov, Entropy-driven liquid–liquid separation in supercooled water Science Reports, 2 (2012) 713. [Back]
  6. F. Rosario-Ortiz, J. Rose, V. Speight, U. von Gunten and J. Schnoor, How do you like your tap water? Science, 351 (2016) 912-914. [Back]
  7. Y. Huang, C. Zhu, L. Wang, X. Cao, Y. Su, X. Jiang, S. Meng, J. Zhao and X. C. Zeng, A new phase diagram of water under negative pressure: The rise of the lowest-density clathrate s-III, Science Advances, 2 (2016) e1501010. [Back, 2, 3]
  8. S. M. Pershin, A. F. Bunkin, M. Ya. Grishin, V. N. Lednev and N. P. Palmina, Nonmonotonic concentration dependences of elastic light scattering and its fluctuations in aqueous solutions, Doklady Phys.Chem.466 (2016) 19-22; originally Doklady Akademii Nauk 466 (2016) 184-187. [Back]
  9. T. B. Qaisrani, M. M. Qaisrani and T. M. Qaisrani, Arabinoxylans from psyllium husk: A review, Journal of Agriculture and Environmental Sciences, 6 (2016) 33-39. [Back]
  10. S. Chen, Z. Xu and J. Li, The observation of oxygen—oxygen interactions in ice, New Journal of Physics, 18 (2016) 023052. [Back]
  11. C. Laurence and M. Bertholet, Observations on the strength of hydrogen bonding, Perspectives Drug Discovery Design, 18 (2000) 39-60; M. H. Abraham, P. P. Duce, D. V. Prior, D. G. Barratt, J. J. Morris and P. J. Taylor, Hydrogen Bonding. Part 9. Solute proton donor and protonacceptor scales for use in drug design, Journal of the Chemical Society Perkin Transactions II, (1989) 1355-1375. [Back]
  12. J. Kim, Y. Tian, and J. Wu, Thermodynamic and structural evidence for reduced hydrogen bonding among water molecules near small hydrophobic solutes, Journal of Physical Chemistry B 119 (2015) 12108-12116. [Back]
  13. J. A. Cray, A. Stevenson, P. Ball, S. B. Bankar, E. CA. Eleutherio, T. C Ezeji, R. S. Singhal, J. M. Thevelein, D. J Timson and J. E. Hallsworth, Chaotropicity: a key factor in product tolerance of biofuel-producing microorganisms, Current Opininion Biotechnology, 33 (2015) 228-259. [Back]
  14. L. Knake, G. Schwaab, K. Kartaschew and M. Havenith, Solvation dynamics of trimethylamine N-Oxide in Aqueous solution probed by terahertz spectroscopy, Journal of Physical Chemistry B, 119 (2015) 13842-13851. [Back]
  15. L. Chen, X. Dong, F. Wang, Y. Wang and Y. Xia, Base–acid hybrid water electrolysis, Chemistry Communications, 52 (2016) 3147-3150. [Back]
  16. K. Kurotobi and Y. Murata, A single molecule of water encapsulated in fullerene C60, Science, 333 (2011) 613-616. [Back, 2]
  17. R. Zhang1, M. Murata1, T. Aharen, A. Wakamiya, T. Shimoaka, T. Hasegawa and Y. Murata, Synthesis of a distinct water dimer inside fullerene C70, Nature, Chem. 8 (2016) 435-441; S. Hadlington, Molecular surgery stitches up water dimer in fullerene cage, Chemistry World, 7 March 2016. [Back, 2]
  18. C. Tornow, P. Gast, U. Motschmann, S. Kupper, E. Kührt and I. Peliv, Water formation in early solar nebula: II—Collapsing cloud core, Planetary Space Science, 98 (2014) 233-253. [Back]
  19. L. Yang, F. J. Ciesla, C. M. O’D. Alexander, The D/H ratio of water in the solar nebula during its formation and
    evolution, Icarus 226 (2013) 256-267. [Back]
  20. M. K. Temgire, A. K. Suresh, S. G. Kane and J. R. Bellare, Establishing the interfacial nano-structure and elemental composition of homeopathic medicines based on inorganic salts: a scientific approach, Homeopathy, 106 (2016) 160-172. [Back]
  21. L. S. Pedroza, A. Poissier and M.-V. Fernández-Serra, Local order of liquid water at metallic electrode surfaces, Journal of Chemical Physics, 142 (2015) 034706. [Back]
  22. J. Fritz, B. Bitsch, E. Kührt, A. Morbidelli, C. Tornow, K. Wünnemann, V. A. Fernandes, J. L. Grenfell, H. Rauer, R. Wagner and S. C. Werne, Earth-like habitats in planetary systems, Planetary Space Sci 98 (2014) 254-267. [Back]
  23. S. L. Miller, A production of amino acids under possible primitive Earth conditions, Science, 117 (1953) 528-529. [Back]

  24. R. Pascal and L. .Boiteau, Origins of life: Emergence of amino acids, Wiley encyclopedia of chemical biology, (2008) doi: 10.1002/9780470048672.wecb423. [Back]
  25. M. J. Mottl, B. T. Glazer, R. I. Kaiser and K. J. Meech, Water and astrobiology, Chemie der Erde, 67 (2007) 253-282. [Back] [Back to Top to top of page]
  26. V. E. Ostrovskii and E. A. Kadyshevich, Generalized hypothesis of the origin of the living-matter simplest elements, transformation of the Archean atmosphere, and the formation of methane±hydrate deposits, Physics-Uspekhi 50 (2007) 175-196; E. A. Kadyshevich and V. E. Ostrovskii, Hydrate hypothesis of living matter origination (LOH-hypothesis) Thermodynamic grounds of formation of living matter simplest elements from hydrocarbons and niter, Journal of Thermal Analysis Calorimetry 95 (2009) 571-578. [Back]
  27. S. Seager, Exoplanet habitability, Science, 340 (2013) 577-581. [Back]
  28. M. F. Chaplin, Can Martians survive on Mars? Poster, London South Bank University Research Conference and Postgraduate Summer School, (2008). [Back]
  29. K. Gibson Jr., F. Westall, D. S. McKay, K. Thomas-Keprta, S. Wentworth and C. S. Romanek, Evidence for ancient martian life, NASA Johnson Space Center, Houston, USA, (1999); A. Bhardwaj, L. Sam, F. J. Martín-Torres, M.-P. Zorzano and R. M. Fonseca, Martian slope streaks as plausible indicators of transient water activity Science Rep.7 (2017) 7074. [Back]
  30. A. Kereszturi, D. Möhlmann, Sz. Berczi, T. Ganti, A. Horvath, A. Kuti, T. Pocs, A. Sik and E. Szathmary, 2008, Analysis of possible interfacial water driven seepages on Mars, Lunar Planetary Science XXXIX (2008) 1555. [Back]
  31. F. J. Martín-Torres, M.-P. Zorzano, P. Valentín-Serrano, A.-M. Harri, M. Genzer, O. Kemppinen, E. G. Rivera-Valentin, I. Jun, J. Wray, M. B. Madsen, W. Goetz, Al. S. McEwen, C. Hardgrove, N. Renno, V. F. Chevrier, M. Mischna, R. Navarro-González, J. Martínez-Frías, P.Conrad, T. McConnochie, C. Cockell, G. Berger, A. R. Vasavada, D. Sumner and D. Vaniman, Transient liquid water and water activity at Gale crater on Mars, Nature, Geosciences, 8 (2015) 357-361. [Back]
  32. What is the diversity of life in the cosmos?, In: Water and Life, ed. R. M. Lynden-Bell, S. Conway Morris, J. D. Barrow, J. L. Finney and C. L. Harper, Jr. (CRC Press, Boca Raton, 2010) pp 249-258. [Back]
  33. D. C. Clary, Quantum dynamics in the smallest water droplet, Science, 351 (2016) 1267-1268; J. O. Richardson, C. Pérez, S. Lobsiger, A. A. Reid, B. Temelso, G. C. Shields, Z. Kisiel5, D. J. Wales1 B. H. Pate and S. C. Althorpe, Concerted hydrogen-bond breaking by quantum tunneling in the water hexamer prism Science, 351 (2016) 1310-1313. [Back, 2]
  34. A. Choudhary and A. Chandra, Anisotropic structure and dynamics of the solvation shell of a benzene solute in liquid water from ab initio molecular dynamics simulations, Physical Chemistry Chemical Physics, 18 (2016) 6132-6145. [Back]
  35. J. M. Gordon and H. T. Chua, Thermodynamic perspective for the specific energy consumption of seawater desalination, Desalination 386 (2016) 13-18. [Back]
  36. C. Fan, M. Shahid and R, M. Pashley, Studies on bubble column evaporation in various salt solutions. J. Solution Chemistry, 43 (2014) 1297-1312. [Back]
  37. J. F. Ouyang and R. P. A. Bettens, Modelling water: A lifetime enigma, Chimia 69 (2015) 104-111. [Back]
  38. C.P. Herrero, R. Ramírez, Path-integral simulation of ice VII: Pressure and temperature effects, Chem.Phys. 461 (2015) 125-136. [Back]
  39. P. Demonti , R. LeSar and M. L. Klein, New High-Pressure Phases of Ice, Physical Review Letters 60 (1988) 2284-2287. [Back]
  40. A. Treiman, Recent scientific papers on ALH 84001 explained, with insightful and totally objective commentaries (2000) http://www.lpi.usra.edu/lpi/meteorites/alhnpap.html accessed 23/4/2016. [Back]
  41. J. Kessler, H. Elgabarty, T. Spura, K. Karhan, P. Partovi-Azar, A. A. Hassanali and T. D. Kühne, Structure and dynamics of the instantaneous water/vapor interface revisited bypath-integral and ab-initio molecular dynamics simulations. Physical Chemistry B 119 (2015) 10079-10086; arXiv:1504.07351v1 [physics.chem-ph]. [Back]
  42. M. Thämer, L. De Marco,, K. Ramasesha, A. Mandal and A.Tokmakoff, Ultrafast 2D IR spectroscopy of the excess proton in liquid water, Science, 350 (2015) 78-82. [Back]
  43. K. Chodasewicz, Evolution, reproduction and definition of life, Theory in Biosciences, 133 (2014) 39-45;.L. J. Mix, Defending definitions of life, Astrobiology 15 (2015) 1-5. [Back]
  44. N. F. Bunkin, A. V. Shkirin, N. V. Suyazov, V. A. Babenko, A. A. Sychev, N. V. Penkov, K. N. Belosludtsev and S. V. Gudkov, Formation and dynamics of ion-stabilized gas nanobubble phase in the bulk of aqueous NaCl solutions, Journal of Physical Chemistry B 120 (2016) 1291-1303. [Back]
  45. F. Mallamace, C. Corsaro, D. Mallamace, S. Vasi, C. Vasi, P. Baglioni, S. V. Buldyrev, S.-H. Chen and H. E. Stanley, Energy landscape in protein folding and unfolding, Proceedings of the National Academy of Sciences, 113 (2016) 3159-3163. [Back]
  46. M. J. Gillan, D. Alfè and A. Michaelides, Perspective: How good is DFT for water? Chemical Physics, 144 (2016) 130901; arXiv:1603.01990v1 [cond-mat.mtrl-sci]. [Back]
  47. A. I. Kolesnikov, G. F. Reiter, N. Choudhury, T. R. Prisk, E. Mamontov, A. Podlesnyak, G. Ehlers, A. G. Seel, David J. Wesolowski and L. M. Anovitz, Quantum tunneling of water in beryl: A new state of the water molecule, Physical Review Letters 116 (2016) 16780; B. P. Gorshunov, E. S. Zhukova, V. I. Torgashev, V. V. Lebedev, G. S. Shakurov, R. K. Kremer, E. V. Pestrjakov, V. G. Thomas, D. A. Fursenko and M. Dressel, Quantum behavior of water molecules confined to nanocavities in gemstones, Journal of Physical Chemistry Letters, 4 (2013) 2015; E. S. Zhukova, V. I. Torgashev, B. P. Gorshunov, V. V. Lebedev, G. S. Shakurov, R. K. Kremer, E. V. Pestrjakov, V. G. Thomas, D. A. Fursenko, A. S. Prokhorov and M. Dressel, Vibrational states of a water molecule in a nano-cavity of beryl crystal lattice, Journal of Chemical Physics,140 (2014) 224317; arxiv.org/ftp/arxiv/papers/1401/1401.5760 ; P. Ball, Scientists report 'new state of water', Chemistry World, June (2016) 28. [Back, 2]
  48. C. Beduz, M. Carravetta, J. Y.-C. Chen, M. Concistrè, M. Denning, M.Frunzi, A. J. Horsewill, O. G. Johannessen, R. Lawler, X. Lei, M. H. Levitt,1, Y. Li, S. Mamone, Y. Murata, U. Nagel, T. Nishida, J. Ollivier, S. Rols, T. Rõõm, R. Sarkar, N. J. Turro and Y. Yang, Quantum rotation of ortho and para-water encapsulated in a fullerene cage, Proceedings of the National Academy of Sciences, 109 (2012) 12894. [Back, 2]
  49. K. G. Nayar, M. H. Sharqawy, L. D. Banchik and J. H. Lienhard V, Thermophysical properties of seawater: A review and new correlations that include pressure dependence, Desalination 390 (2016) 1-24; implemented at http://web.mit.edu/seawater/. [Back]
  50. Y. Chen, H. I. Okur, N. Gomopoulos, C. Macias-Romero, P. S. Cremer, P. B. Petersen, G. Tocci, David M. Wilkins, C. Liang, M. Ceriotti and S. Roke, Electrolytes induce long-range orientational order and free energy changes in the H-bond network of bulk water, Science Advances, 2 (2016) e1501891. [Back, 2] [Back to Top to top of page]
  51. H. Rauch and W. Waschkowski, Neutron scattering lengths, In A.-J. Dianoux and G. Lander (eds.), Neutron Data Booklet, 2nd ed.; (Old City Publishing: Philadelphia, PA, USA, 2003) pp 1-1 - 1-17; ISBN: 0-9704143-7-4. [Back]
  52. R. N. Goldberg, J. Schliesser, A. Mittal, S. R. Decker, A. L. O. M. Santos, V. L. S. Freitas, A. Urbas, B. E. Lang, C. Heiss, M. D. M. C. Ribeiro da Silva, B. F. Woodfield, R. Katahira, W. Wang and D. K. Johnson, A thermodynamic investigation of the cellulose allomorphs: Cellulose(am), cellulose Iβ(cr), cellulose II(cr), and cellulose III(cr), Journal of Chemical Thermodynamics, 81 (2015) 184-226. [Back]
  53. K. Amann-Winkel, M.-C. Bellissent-Funel, L. E. Bove, T. Loerting, A. Nilsson, A. Paciaroni, D. Schlesinger, L. Skinner, X-ray and neutron scattering of water, Chemical Reviews, 116 (2016) 7570-7589. [Back]
  54. O. , When proteins are completely hydrated in crystals, International Journal of Biological Macromolecules, 89 (2016) 137-143. [Back]
  55. K.-C. Park, P. Kim, A. Grinthal, N. He, D. Fox, J. C. Weaver and J. Aizenberg, Condensation on slippery asymmetric bumps, Nature, 531 (2016) 78-82; M. Prakesh, Bumps lead the way, Nature, Mat. 15 (2015) 378-379.. [Back]
  56. N. Ebrahimi and R. Sadeghi, Osmotic properties of carbohydrate aqueous solutions, Fluid Phase Equilibria, 417 (2016) 171-180. [Back]
  57. X.-S. Li, C.-G. Xu, Y. Zhang, X.-K. Ruan, G. Li and Y. Wang, Investigation into gas production from natural gas hydrate: A review, Applied Energy, 172 (2016) 286-322. [Back]
  58. M. Matsumoto, A. Baba, and I. Ohmine, Topological building blocks of hydrogen bond network in water, J. Chemical Physics, 127 (2007) 134504. [Back]
  59. A. Hudait, S. Qiu, L. Lupi and V. Molinero, Free energy contributions and structural characterization of stacking disordered ices, Physical Chemistry Chemical Physics, 18 (2016) 9544-9553. [Back, 2]
  60. U. Einhorn-Stoll, E. Vasileva, T. Hecht and S. Drusch, Investigation of pectin-water interactions:A practical approach, In Eds: P. A Williams and G. Phillips, Gums and stabilisers for the food industry 18 Hydrocolloid functionality for affordable and sustainable global food solutions (Royal Society of Chemistry, 2016, pp 1-12). [Back]
  61. A. R. Mackie, B. Bajka and N. Rigby, Dietary fibre: More than a prebiotic, In Eds: P. A Williams and G. Phillips, Gums and stabilisers for the food industry 18 Hydrocolloid functionality for affordable and sustainable global food solutions (Royal Society of Chemistry, 2016, pp 227-234 ). [Back]
  62. Y.-K. Leong and B.-C. Ong, Polyelectrolyte-mediated interparticle forces inaqueous suspensions: Molecular structure and surface forces relationship, Chemical Engineering Research and Design, 101 (2015) 44-55. [Back]
  63. N. J. English and J. M. D. MacElroy, Perspectives on molecular simulation of clathrate hydrates: Progress, prospects and challenges, Chemical Engineering Science, 121 (2015) 133-156. [Back]
  64. H. An, G. Liu, R. Atkin and V. S. J. Craig, Surface nanobubbles in nonaqueous media: Looking for nanobubbles in DMSO, formamide, propylene carbonate, ethylammonium nitrate, and propylammonium nitrate, ACS Nano, 9 (2015) 7596-7607. [Back]
  65. L. Vlcek and A. A. Chialvo, Single-ion hydration thermodynamics from clusters to bulk solutions: Recent insights from molecular modeling, Fluid Phase Equilibria 407 (2016) 58-75. [Back]
  66. N. F. Bunkin and F. V. Bunkin, Bubbstons: stable microscopic gas bubbles in very dilute electrolytic solutions, Sov. Phys. JETP 74 (1992) 271-279, originally in Zh. Eksp. Teor. Fiz. 101 (1992) 512-527. [Back]
  67. P. D. Ward and D. Brownlee, Rare Earth: Why complex life Is uncommon in theuniverse, (Copernicus/Springer, New York, 2000) ISBN-10: 0387987010. [Back]
  68. D. Darling, Life everywhere (Rev. Ed. Basic Books, 2007) ASIN: B003ULOBRE. [Back]
  69. A. Nilsson, D. Schlesinger and L. G. M. Pettersson, X-ray and simulation studies of water, Rivesta del nuovo cimento 39 (2016) 225-278, reproduced from Proceedings of the International School of Physics “Enrico Fermi”, Course 187, Water: Fundamentals as the basis for understanding the environment and promoting technology, ed. P. G. Debenedetti, M. A. Ricci and F. Bruni (IOS Press, Amsterdam and SIF, Bologna) 2015, pp. 77-135; A. Nilsson and L. G. M. Pettersson, The structural origin of anomalous properties of liquid water, Nature, Commun. 6 (2015) 8998. [Back, 2]
  70. T. A. Larsen, S. Hoffmann, C. Lüthi, B. Truffer and M. Maurer, Emerging solutions to the water challenges of an urbanizing world, Science, 352 (2916) 928-933. [Back]
  71. C. Lauzin, U. Jacovella and F. Merkt, Threshold ionization spectroscopy of H2O, HDO and D2O and low-lying vibrational levels of HDO+ and D2O+, Molecular Physics, 113 (2015) 3918-3924. [Back]
  72. S. Christiaens, S. Van Buggenhout, K. Houben, Z. J. Kermani, K. R. N. Moelants, E. D. Ngouémazong, A. Van Loey and M. E. G. Hendrickx, Process–structure–function relations of pectin infood, Critical Reviews in Food Science and Nutrition, 56 (2016) 1021-1042. [Back]
  73. G. M. Hale and M. R. Querry, Optical constants of water in the 200 nm to 200 µm wavelength region, Applied Optics, 12 (1973) 555-563. [Back]
  74. L. Noack, D. Höning, A. Rivoldini, C. Heistracher, N. Zimov, B. Journaux H. Lammer, T. Van Hoolst, and J. H. Bredehöft, Water-rich planets: How habitable is a water layer deeper than on Earth?, Icarus, 277 (2016) 215–236. [Back]
  75. P. Tiwary, J. Mondala, J. A. Morrone and B. J. Berne, Role of water and steric constraints in the kinetics of cavity–ligand unbinding, Proceedings of the National Academy of Sciences, 112 (2015) 12015-12019. [Back] [Back to Top to top of page]
  76. T. Jiang, W. Han, M. Maduke and E. Tajkhorshid, Molecular basis for differential anion binding and
    proton coupling in the Cl /H+ exchanger ClC-ec1, Journal of the American Chemical Society, 138 (2016) 3066-3075. [Back]
  77. Y.-L. S. Tse, C. Chen, G. E. Lindberg, R. Kumar and G. A. Voth, Propensity of hydrated excess protons and hydroxide anions for the air−water interface, Journal of the American Chemical Society, 137 (2015) 12610-12616. [Back]
  78. D. Meral, S. Toal, R. Schweitzer-Stenner and B. Urbanc, Water-centered interpretation of intrinsic pPII propensities of amino acid residues: In vitro-driven molecular dynamics study, Journal of Physical Chemistry B 119 (2015) 13237-13251. [Back]
  79. N. Schwierz, C. V. Frost, P. L. Geissler and M. Zacharias, Dynamics of seeded Aβ<40>-fibril growth from atomistic MD simulations: Kinetic trapping and reduced water mobility in the locking step, Journal of the American Chemical Society, 138 (2016) 527-539; V. Dalal, S. Arya and S. Mukhopadhyay, Confined water in amyloid-competent oligomers of the prion protein, ChemPhysChem, 17 (2016) 2804-2807. [Back]
  80. C. A. Angell, Supercooled water, Annual Review of Physical Chemistry 34 (1983) 593-630. [Back]
  81. G. Sazaki, S. Zepeda, S. Nakatsubo, M. Yokomine and Y. Furukawa, Quasi-liquid layers on ice crystal surfaces are made up of two different phases, Proceedings of the National Academy of Sciences, 109 (2012) 1052-1055; H. Asakawa, G. Sazaki, K. Nagashima, S. Nakatsubo and Y. Furukawa, Two types of quasi-liquid layers on ice crystals are formed kinetically, Proceedings of the National Academy of Sciences, 113 (2016) 1749-1753; K.-I. Murata, H. Asakawa, K. Nagashima, Y. Furukawa and G. Sazaki, Thermodynamic origin of surface melting on ice crystals, Proceedings of the National Academy of Sciences, (2016) E6741–E6748; D. T. Limmer, Closer look at the surface of ice, Proceedings of the National Academy of Sciences, 113 (2016) 12347-12349. [Back]
  82. E. Bertoft, G. A. Annor, X. Shen, P. Rumpagaporn, K. Seetharaman and B. R. Hamaker, Small differences in amylopectin fine structure may explain large functional differences of starch, Carbohydrate Polymers, 140 (2016) 113-121. [Back]
  83. T. Oroguchi and M. Nakasako, Changes in hydration structure are necessary for collective motions of a multi-domain protein, Science Reports, 6 (2016) 26302. [Back]
  84. F. Bianchi, J. Tröstl, H. Junninen, C. Frege, S. Henne, C. R. Hoyle, U. Molteni, E. Herrmann, A. Adamov, N. Bukowiecki, X. Chen, J. Duplissy, M. Gysel, M. Hutterli, J. Kangasluoma, J. Kontkanen, A. Kürten, H. E. Manninen, S. Münch, O. Peräkylä, T. Petäjä, L. Rondo, C. Williamson, E. Weingartner, J. Curtius, D. R. Worsnop, M. Kulmala, J. Dommen and U. Baltensperge, New particle formation in the free troposphere: A question of chemistry and timing, Science, 352 (2016) 1109-1112. [Back]
  85. C. Calero, H. E. Stanley and G. Franzese, Structural interpretation of the large slowdown of water dynamics at stacked phospholipid membranes for decreasing hydration level: All-atom molecular dynamics, Materials 9 (2016) 319. [Back]
  86. J. F. Nagle and S. Tristram-Nagle, Structure of lipid bilayers, Biochimica et Biophysica Acta, 1469 (2000) 159-195. [Back]
  87. K. J. Tielrooij, D. Paparo, L. Piatkowski, H. J. Bakker and M. Bonn, Dielectric relaxation dynamics of water in model membranes probed by terahertz spectroscopy, Biophysical Journal , 97 (2009) 2484-2492. [Back]

  88. E. A. Disalvo, A. M. Bouchet and M. A. Frias, Connected and isolated ch2 populations in acyl chains and its relation to pockets of confined water in lipid membranes as observed by ftir spectrometry, Biochimica et Biophysica Acta, Biomembranes 1828 (2013) 1683-1689; E. A. Disalvo, O. A. Pinto, M. F. Martin A. M. Bouchet, A. Hollmann, M. A. Frías, Functional role of water in membranes updated: A tribute to Träuble, Biochimica et Biophysica Acta, 1848 (2015) 1552-1562. [Back]
  89. Y. von Hansen, S. Gekle and R. R. Netz, Anomalous anisotropic diffusion dynamics of hydration water at lipid membranes, Physical Review Letters 111 (2013) 118103; D. G. Osborne, J. A. Dunbar, J. G. Lapping, A. M. White and K. J. Kubarych, Site-specific measurements of lipid membrane interfacial iater dynamics with multidimensional infrared spectroscopy, Journal of Physical Chemistry B 117 (2013) 15407-15414. [Back]
  90. M. Hishida and K. Tanaka, Long-range hydration effect of lipid membrane studied by terahertz tme-domain spectroscop, Physical Review Letters 106 (2011) 158102. [Back]

  91. Z. Zhang, Y. Chen, X. Tang, J. Li, L. Wang, and J. Yang, Solid-state NMR shows that dynamically different domains of membrane proteins have different hydration dependence, Journal of Physical Chemistry B 2014, 118 (2014) 9553-9564. [Back]

  92. (a) S. J. Singer and G. L. Nicolson, The Fluid Mosaic Model of the structure of cell membranes, Science, 175 (1972) 720-731; (b) G. L. Nicolson, The Fluid—Mosaic Model of membrane structure: Still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years, Biochimica et Biophysica Acta, Biomembranes 1838 (2014) 1451-1466. [Back]
  93. C. R. Hill, C. Mitterdorfer, T. G. A. Youngs, D. T. Bowron, H. J. Fraser and T. Loerting, Neutron scattering analysis of water’s glass transition and micropore collapse in amorphous solid water, Physical Review Letters 116 (2016) 215501. [Back, 2]
  94. V. Kocherbitov, The nature of nonfreezing water in carbohydrate polymers, Carbohydrate Polymers, 150 (2016) 353-358. [Back]
  95. W. T. S. Cole, J. D. Farrell, D. J. Wales and R. J. Saykally, Structure and torsional dynamics of the water octamer from THz laser spectroscopy near 215 μm, Science, 352 (2016) 1194-1197. [Back, 2]
  96. H. Yang, Y. Song and H. Chen, Stabilities, vibrational states and hydrogen bond characteristics of water clusters, J Clust Sci 27 (2016) 775-789. [Back]
  97. A. Mashaghi, P. Partovi-Azar, T. Jadidi, N. Nafari, P. Maass, M. R. R.Tabar, M. Bonn and H. J. Bakke, rHydration strongly affects the molecular and electronic structure of membrane phospholipids, Journal of Chemical Physics,136 (2012) 114709. [Back]
  98. F. Jafarpour, T. Biancalani and N. Goldenfeld, A noise-induced mechanism for biological homochirality of early life self-replicators, Physical Review Letters 15 (2015 )158101.; arXiv:1507.00044v2 [q-bio.PE] 17 Aug 2015. [Back]
  99. E. G. Grosch and R. M. Hazen, Microbes, mineral evolution, and the rise of microcontinents—Origin and coevolution of life with early Earth, Astrobiology 15 (2015) 922-939. [Back]
  100. L. Hooper, D. K. Bunn, A. Abdelhamid, R. Gillings, A. Jennings, K. Maas, S. Millar, E. Twomlow, P. R Hunter, L. Shepstone4 J. F. Potter and S. J Fairweather-Tait, Water-loss (intracellular) dehydration assessed using urinary tests: how well do they work? Diagnostic accuracy in older people, American Journal of Clinical Nutrition, 104 (2016) 121-131. [Back]


link 2601 - 2700
link 2701 - 2800
link 2801 - 2900
link 2901 - 3000
link 3001 - 3100
link 3101 - 3200


(c) Martin Chaplin 9 November, 2017
(printed 19 November 2017)