Water site headerMasthead Island, Great Barrier Reef Print-me keygo to Water Visitor Book contributions
Go to my page Water Structure and Science

Oxygen and water

Water stores and transmits information, concerning solutes, by means of its hydrogen-bonded network. Changes to this clustering network brought about by gaseous solutes may take some time to re-equilibrate. It has been shown that a high magnetic field has an insignificant effect on the equilibrium content of dissolved oxygen (< 0.3 mM at 20 °C under atmospheric conditions) but does significantly enhance its dissolution rate [176]. There is one report that magnetically treated water (also from the same laboratory, electromagnetically treated water) retains a significantly changed effect on fungal spore germination for at least 24 hours [174]; however other parameters (for example, reduced dissolved oxygen levels) may be responsible for such effects. Mechanically-induced hydrogen bond breakage, caused by shaking, has been reported to last for weeks [336].

 

High electric fields (E ~109 V m-1) reduce water's permittivity [616], which will increase the solubility of gases. Water may be supersaturated with oxygen (~3-6 mM; equivalent to less than a breath of air in each liter of supersaturated water) under pressure. It should be noted that, left by itself, degassed water may take days to re-equilibrate with atmospheric gases (except for CO2 that dissolves much faster) and as even small amounts of dissolved gases are reported to have relatively large effects on the structuring of water [560], it is not unreasonable to suppose that artificially induced metastable conditions with higher gas content may last for some time. Drinking of oxygenated water does give a transient moderate increase in serum ascorbyl radicals (with unknown consequences), an effect that disappears with regular consumption [422]. It will not, however, significantly add to the body's oxygen intake and has no apparent harmful or health-promoting effects [772]. Production of singlet oxygen (1O2;1Δg+, electrons paired in their π-antibonding molecular orbitals, compare 3O2, normal triplet oxygen, 3Σg-, where two electrons are in equivalent but separate π-antibonding orbitals with the same unpaired spin) during processing may cause the dissolved peroxide concentration to increase via the water-catalyzed reaction;

 

x.1O2+2H2O->(1–x).3O2+2H2O2        [1199]

 

with possible consequential pharmacological effects. Interestingly singlet oxygen takes part in antibody-catalyzed water oxidation similarly producing triplet oxygen and hydrogen peroxide [624]. However, as the lifetime of the singlet oxygen is expected to be in the μs range when dissolved upwards towards 45 min in the (low pressure) gas phase, singlet oxygen molecules are not expected to remain in the processed bottled water. 

[Back to Top to top of page]


 

Home | Site Index | Water and health | LSBU | Top

 

This page was established in 2001 and last updated by Martin Chaplin on 19 May, 2018


Creative Commons License
This work is licensed under a Creative Commons Attribution
-Noncommercial-No Derivative Works 2.0 UK: England & Wales License

 

The preferred Web Browser is Mozilla Firefox