Water site headerMasthead Island, Great Barrier Reef Print-me keygo to Water Visitor Book contributions
Go to my page Water Structure and Science

Water Structure and Science, References 1 - 100


  1. C. H. Cho, S. Singh and G. W. Robinson, Liquid water and biological systems: the most important problem in science that hardly anyone wants to see solved, Faraday Discussions, 103 (1996) 19-27. [Back]
  2. I. Nezbeda and J. Slovác, A family of primitive models of water: three-, four and five- site models, Molecular Physics, 90 (1997) 353-372. [Back]
  3. P. G. Kusalik and I. M. Svishchev, The spatial structure in liquid water, Science, 265 (1994) 1219-1221. [Back, 2]
    (The original SPC/E reference is H. J. C. Berendsen, J. R. Grigera and T. P. Straatsma, The missing term in effective pair potentials, Journal of Physical Chemistry 91 (1987) 6269-6271.)
  4. P. M. Wiggins, High and low-density water in gels, Progress in Polymer Science, 20 (1995) 1121-1163. [Back, 2, 3, 4, 5, 6]
  5. Q. Liu and J. W. Brady, Anisotropic solvent structuring in aqueous sugar solutions, Journal of the American Chemical Society, 118 (1996) 12276-12286. [Back, 2]
  6. S. Mashimo, Structure of water in pure liquid and biosystem, J. Non-Crystalline Solids, 172-174 (1994) 1117-1120. [Back, 2]
  7. I. M. Svishchev and P. G. Kusalik, Structure in liquid water - a study of spatial-distribution functions, Journal of Chemical Physics,99 (1993) 3049-3058. [Back, 2]
  8. D. Eisenberg and W. Kauzmann, The structure and properties of water (Oxford University Press, London, 1969); (b) The dodecahedral interstitial model is described in L. Pauling, The structure of water, In Hydrogen bonding, Ed. D. Hadzi and H. W. Thompson (Pergamon Press Ltd, London, 1959) pp. 1-6. [Back, 2, 3, 4, 5, 6, 7, 8, 9]
  9. A. H. Narten, M. D. Danford and H. A. Levy, X-Ray diffraction study of liquid water in the temperature range 4-200 °C, Faraday Discussions, 43 (1967) 97-107. [Back, 2]
  10. T. Iijima and K. Nishikawa, Structure model of liquid water as investigated by the method of reciprocal space expansion, Journal of Chemical Physics, 101 (1994) 5017-5023. [Back]
  11. H. E. Stanley and J. Teixeira, Interpretation of the unusual behavior of H2O and D2O at low temperature: tests of a percolation model, Journal of Chemical Physics, 73 (1980) 3404-3422. [Back, 2]
  12. R. J. Speedy, Waterlike anomalies from repulsive interactions, Journal of Chemical Physics,107 (1997) 3222-3229. [Back]
  13. C. H. Cho, S. Singh and G. W. Robinson, Understanding all of water's anomalies with a nonlocal potential, Journal of Chemical Physics,107 (1997) 7979-7988. [Back, 2]
  14. H. Tanaka, Simple physical explanation of the unusual thermodynamic behavior of liquid water, Physical Review Letters, 80 (1998) 5750-5753. [Back, 2]
  15. R. C. Dougherty and L. N. Howard, Equilibrium structural model of liquid water: Evidence from heat capacity, spectra, density, and other properties, Journal of Chemical Physics,109 (1998) 7379-7393. [Back, 2, 3, 4]
  16. O. Mishima and H. E. Stanley, The relationship between liquid, supercooled and glassy water, Nature, 396 (1998) 329-335. [Back, 2, 3, 4, 5]
  17. J. C. Dore, Structural studies of water and other hydrogen-bonded liquids by neutron diffraction, Journal of Molecular Structure, 250 (1991) 193-211. [Back, 2]
  18. W. A. P. Luck, Water in biological systems, Top. Curr. Chem. 64 (1976) 114-180. [Back, 2, 3]
  19. P. Boutron and A. Alben, Structural model for amorphous solid water, Journal of Chemical Physics,62 (1975) 4848-4853. [Back, 2]
  20. J. C. Dore, Hydrogen-bond networks in supercooled liquid water and amorphous vitreous ices, J. Mol. Struct. 237 (1990) 221-232. [Back, 2]
  21. E. Whalley, D. D. Klug and Y. P. Handa, Entropy of amorphous ice, Nature, 342 (1989) 782-783. [Back, 2]
  22. B. Kamb, Ice polymorphism and the structure of water, in Structural Chemistry and Molecular Biology, ed. A. Rich and N. Davidson (W. H. Freeman, San Francisco, 1968) pp. 507-542. [Back]
  23. (a) G. W. Robinson, C. H. Cho and J. Urquidi, isosbestic points in liquid water: Further strong evidence for the two-state mixture model, Journal of Chemical Physics,111 (1999) 698-702. ( b) J. Urquidi, G. W. Robinson, C. H. Cho, B. Xiao and S. Singh, Explicit Outer Bonding Transformations in Liquid Water. The Key to its Understanding, ECCC-5 (1998) [Back, 2, 3, 4 ]
  24. L. S. Bartell, On possible interpretations of the anomalous properties of supercooled water, J. Physical Chemistry 101 (1997) 7573-7583. [Back, 2]
  25. M. Campolat, F. W. Starr, A. Scala, M. R. Sadr-Lahijany, O. Mishima, S. Havlin and H. E. Stanley, Local structural heterogeneities in liquid water under pressure, Chemical Physics Letters, 294 (1998) 9-12. [Back, 2] [Back to Top to top of page]
  26. F. Sobott, A. Wattenberg, H. D. Barth and B. Brutschy, Ionic clathrates from aqueous solutions detected with laser induced liquid beam ionization/desorption mass spectrometry, International Journal of Mass Spectrometry, 185-7 (1999) 271-279. [Back, 2]
  27. G. Graziano, On the size dependence of hydrophobic hydration, J. the Chemical Society, Faraday Transactions, 94 (1998) 3345-3352. [Back, 2]
  28. E. A. Steel, K. M. Merz, A. Selinger and A. W. Castleman, Mass-spectral and computational free-energy studies of alkali-metal ion-containing water clusters, J. Physical Chemistry 99 (1995) 7829-7836. [Back]
  29. P. M. Wiggins, Hydrophobic hydration, hydrophobic forces and protein folding, Physica A 238 (1997) 113-128. [Back, 2, 3]
  30. S. R. Elliott, Interpretation of the principal diffraction peak of liquid and amorphous water, Journal of Chemical Physics,103 (1995) 2758-2761. [Back, 2, 3]
  31. H. Tanaka, Cavity distribution in liquid water and hydrophobic hydration, Chemical Physics Letters, 282 (1998) 133-138. [Back, 2]
  32. L. J. Barbour, G. W. Orr and J. L. Atwood, An intermolecular (H2O)10 cluster in a solid-state supramolecular complex, Nature, 393 (1998) 671-673; M. Yoshizawa, T. Kusukawa, M. Kawano, T. Ohhara, I. Tanaka, K. Kurihara, N. Niimura, and M. Fujita, Endohedral clusterization of ten water molecules into a "Molecular Ice" within the hydrophobic pocket of a self-assembled cage, Journal of the American Chemical Society, 127 (2005) 2798-2799. [Back]
  33. H. Tanaka, Fluctuation of local order and connectivity of water molecules in two phases of supercooled water, Physical Review Letters 80 (1998) 113-116. [Back]
  34. O. Mishima, L. D. Calvert and E. Whalley, An apparently first-order transition between two amorphous phases of ice induced by pressure, Nature, 314 (1985) 76-78. [Back, 2]
  35. A. H. Narten, W. E. Thiessen and L. Blum, Atom pair distribution functions of liquid water at 25 °C from neutron diffraction, Science, 217 (1982) 1033-1034. [Back]
  36. A. A. Chialvo, P. T. Cummings, J. M. Simonson, R. E. Mesmer and H. D. Cochran, Interplay between molecular simulation and neutron scattering in developing new insights into the structure of water, Industrial & Engineering Chemistry Research, 37 (1998) 3021-3025. [Back]
  37. A. K. Soper and M. G. Phillips, A new determination of the structure of water at 25 °C, Chem. Phys. 107 (1986) 47-60. [Back]
  38. A. Geiger, P. Mausbach and J. Schnitker, Water and Aqueous Solutions (Hilger, Bristol, 1986) p. 15. [Back]
  39. J. Turner, A. K. Soper and J. L. Finney, A neutron-diffraction study of tetramethylammonium chloride in aqueous solution, Molecular Physics, 70 (1990) 679-700. [Back]
  40. R. Leberman and A. K. Soper, Effect of high-salt concentrations on water-structure, Nature, 378 (1995) 364-366. [Back, 2]
  41. J. C. Li and P. Jenniskens, Inelastic neutron scattering study of high density amorphous water ice, Planetary and Space Science, 45 (1997) 469-473. [Back]
  42. M. R. Chowdhury, J. C. Dore and D. G. Montague, Neutron diffraction studies and CRN model of amorphous ice, Journal of Physical Chemistry 87 (1983) 4037-4039. [Back]
  43. (a) A. Bizid, L. Bosio, L. Defrain and M. Oumezzine, Structure of high-density amorphous water. 1. X-ray diffraction study, Journal of Chemical Physics, 87 (1987) 2225-2230. (b) M. C. Bellissent-Funel, J. Teixeira and L. Bosio, Structure of high-density amorphous water. II Neutron scattering study, Journal of Chemical Physics, 87 (1987) 2231-2235. [Back]
  44. M. C. Bellissent-Funel, Is there a liquid-liquid phase transition in supercooled water?, Europhysics Letters, 42 (1998) 161-166. [Back]
  45. H. E. Stanley, S. V. Budyrev, O. Mishima, M. R. Sadr-Lahijany, A. Scala and F. W. Starr, Unsolved mysteries of water in its liquid and glassy phases, Journal of Physics: Condensed Matter, 12 (2000) A403-A412x. [Back, 2]
  46. C. G. Venkatesh, S. A. Rice and J. B. Bates, A Raman spectral study of amorphous solid water, Journal of Chemical Physics, 63 (1975) 1065-1071. [Back]
  47. G. E. Walrafen and Y. C. Chu, Shear viscosity and self-diffusion evidence for high- concentrations of hydrogen-bonded clathrate-like structures in very highly supercooled liquid water, Journal of Physical Chemistry 99 (1995) 10635-10643. [Back]
  48. W. B. Bosma, L. E. Fried and S. Mukamel, Simulation of the intermolecular vibrational spectra of liquid water and water clusters, Journal of Chemical Physics, 98 (1993) 4413-4421. [Back]
  49. R. B. Krone, Structures of water derived from its viscosity, Chemical Engineering Communications, 128 (1994) 1-17. [Back]
  50. L. Bosio, S-H. Chen and J. Teixeira, Isochoric temperature differential of the x-ray structure factor and structural rearrangements in low-temperature heavy water, Physical Review A, 27 (1983) 1468-1475. [Back, 2] [Back to Top to top of page]
  51. A. V. Okhulkov, Yu. N. Demianets and Yu. E. Gorbaty, X-ray-scattering in liquid water at pressures of up to 7.7 kbar - test of a fluctuation model,Journal of Chemical Physics, 100 (1994) 1578-1588. [Back, 2 , 3]
  52. D. T. Warner, Some possible relationships of carbohydrates and other biological components with the water structure at 37°, Nature, 196 (1962) 1055-1058. [Back]
  53. (a) H. E. Stanley, S. V. Budyrev, M. Canpolat, M. Meyer, O. Mishima, M. R. Sadr-Lahijany, A. Scala and F. W. Starr, The puzzling statistical physics of liquid water, Physica A 257 (1998) 213-232. (b) H. E. Stanley, P. Kumar, L. Xu, Z. Yan, M. G. Mazza, S. V. Buldyrev, S.-H. Chen and F. Mallamace, The puzzling unsolved mysteries of liquid water: Some recent progress, Physica A 386 (2007) 729-743. [Back, 2]
  54. H. E. Stanley, S. V. Budyrev, M. Canpolat, S. Havlin, O. Mishima, M. R. Sadr-Lahijany, A. Scala and F. W. Starr, The puzzle of liquid water: a very complex fluid, Physica D 133 (1999) 453-462.  [Back]
  55. M. F. Chaplin, A proposal for the structuring of water, Biophysical Chemistry, 83 (2000) 211-221. [Back, 2, 3]
  56. J. Urquidi, S. Singh, C. H. Cho and G. W. Robinson, Origin of temperature and pressure effects on the radial distribution function of water, Physical Review Letters, 83 (1999) 2348-2350. [Back, 2, 3]
  57. J. Urquidi, S. Singh, C. H. Cho and G. W. Robinson, Temperature and pressure effects on the structure of liquid water, Journal of Molecular Structure, 485-486 (1999) 363-371. [Back, 2]
  58. A. H. Narten and H. A. Levy, Liquid water: scattering of X-rays, in Water A Comprehensive Treatise, Vol. 1, Ed. F. Franks, (Plenum Press, New York, 1972) pp. 311-332. [Back]
  59. K. Hermansson, A simulated X-ray diffraction study of liquid water: beyond the spherical-atom approximation, Chemical Physics Letters, 260 (1996) 229-235. [Back]
  60. C. H. Cho, J. Urquidi, G. I. Gellene and G. W. Robinson, Mixture model description of the T-, P dependence of the refractive index of water,Journal of Chemical Physics, 114 (2001) 3157-3162. A. H. Harvey, Comment on "Mixture model description of the T-, P dependence of the refractive index of water" [Journal of Chemical Physics,114 (2001) 3157], Journal of Chemical Physics,115 (2001) 7795. C. H. Cho, J. Urquidi and G. I. Gellene, Response to "Comment on 'Mixture model description of the T-, P dependence of the refractive index of water" [Journal of Chemical Physics,114 (2001) 3157], Journal of Chemical Physics,115 (2001) 7796-7797. [Back, 2]
  61. K. N. Marsh (Ed), Recommended Reference Materials for the Realization of Physicochemical Properties, (Blackwell, Oxford, 1987). [Back]
  62. H. G. Hertz, in Water A comprehensive treatise, Vol 3, Ed. F. Franks, (Plenum Press, New York, 1973) p. 301. [Back]
  63. J. N. Murrell, A. D. Jenkins, Properties of Liquids and solutions, 2nd Ed. (John Wiley & Sons, Chichester, England, 1994). [Back, 2]
  64. J. B. Hasted, Liquid water: Dielectric properties, in Water A comprehensive treatise, Vol 1, Ed. F. Franks (Plenum Press, New York, 1972) pp. 255-309. [Back, 2]
  65. F. Franks, Introduction - water, the unique chemical, in Water A comprehensive treatise, Vol. 1, Ed. F. Franks (Plenum Press, New York, 1972) pp. 1-20. [Back]
  66. P. Jedlovszky, M. Mezei and R Vallauri, A molecular level explanation of the density maximum of liquid water from computer simulations with a polarizable potential model, Chemical Physics Letters, 318 (2000) 155-160. [Back, 2]
  67. National Institute of Standards and Technology, A gateway to the data collections. Available at http://webbook.nist.gov (accessed 19 January 2001). [Back, 2, 3, 4]
  68. G. S. Kell, Density, thermal expansivity, and compressibility of liquid water from 0° to 150 °C: Correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale, Journal of Chemical & Engineering Data, 20(1) (1975) 97-105. [Back, 2]
  69. C. H. Cho, J. Urquidi and G. Wilse Robinson, Molecular-level description of temperature and pressure effects on the viscosity of water, Journal of Chemical Physics,111 (1999) 10171-10176. [Back,2]
  70. D. R. Lide Ed., CRC Handbook of chemistry and physics, 80th Ed. (CRC Press, Boca Raton, 1999). Some data were obtained from the 57th Ed, R. C. Weast (1976). [Back, 2, 3, 4, 5, 6]
  71. C. W. Kern, M. Karplus, The water molecule, in Water A comprehensive treatise, Vol. 1, Ed. F. Franks (Plenum Press, New York, 1972) pp. 21-91. [Back]
  72. M. P. Hodges and D. J. Wales, Global minima of protonated water clusters, Chemical Physics Letters, 324 (2000) 279-288. [Back]
  73. C. H. Cho, J. Urquidi, S,. Singh and G. Wilse Robinson, Thermal offset viscosities of liquid H2O, D2O, and T2O, Journal of Physical Chemistry B 103 (1999) 1991-1994. [Back, 2a, 2b, 3]
  74. R. S. Smith and B. D. Kay, The existence of supercooled liquid water at 150 K, Nature, 398 (1999) 788-791.  [Back, 2]
  75. G. P. Johari, A. Hallbrucker and E. Mayer, Two calorimetrically distinct states of liquid water below 150 Kelvin, Science, 273 (1996) 90-92. [Back] [Back to Top to top of page]
  76. E. Tombari, C. Ferrari and G. Salvetti, Heat capacity anomaly in a large sample of supercooled water, Chemical Physics Letters, 300 (1999) 749-751. [Back]
  77. W. A. P. Luck, The importance of cooperativity for the properties of liquid water, Journal of Molecular Structure, 448 (1998) 131-142. [Back]
  78. W. A. P. Luck, D. Klein, K. Rangsriwatananon, Anti-cooperativity of the two water OH groups, Journal of Molecular Structure, 416 (1997) 287-296. [Back]
  79. D. Peeters, Hydrogen bonds in small water clusters: A theoretical point of view, Journal of Molecular Liquids, 67 (1995) 49-61. [Back]
  80. H. Suga, A facet of recent ice sciences,Thermochimica Acta, 300 (1997) 117-126. [Back]
  81. W. B. Holzapfel, Evasive ice X and heavy fermion ice XII: facts and fiction about high-pressure ices, Physica B 265 (1999) 113-120. [Back]
  82. C. Lobban, J. L. Finney, W. F. Kuhs, The structure of a new phase of ice, Nature, 391 (1998) 268-270. [Back, 2]
  83. K. Vonnegut, Cat's Cradle, (Penguin, London, 1963) p. 34. [Back , 2]
  84. M. Benoit, M. Bernasconi and M. Parrinelio, New high-pressure phase of ice, Physical Review Letters, 76 (1996) 2934-2936. [Back]
  85. F. Hofmeister, Zur Lehre von der Wirkung der Salze, Archiv fur Experimentelle Pathologie und Pharmakologie (Leipzig), 24 (1888) 247-260; translated in W. Kunz, J. Henle and B. W. Ninham, ' Zur Lehre von der Wirkung der Salze' (about the science of the effect of salts: Franz Hofmeister's historical papers, Current Opinion in Colloid and Interface Science, 9 (2004) 19-37. [Back]
  86. H. Tanaka, Simple physical model of liquid water, Journal of Chemical Physics,112 (2000) 799-809. [Back, 2]
  87. A. K. Covington, M. I. A. Ferra and R. A. Robinson, Ionic product and enthalpy of ionization of water from electromotive force measurements, J. the Chemical Society, Faraday Transactions, I 73 (1977) 1721-1730. [Back]
  88. H. Preston-Thomas, International temperature scale of 1990, Metrologia 27 (1990) 3-10. [Back]
  89. I. L. Cameron, K. M. Kanal, C. R. Keener and G. D. Fullerton, A mechanistic view of the non-ideal osmotic and motional behavior of intracellular water, Cell Biology International, 21 (1997) 99-113. [Back, 2, 3]
  90. P. L. Silvestrelli and M. Parrinello, Structural, electronic, and bonding properties of liquid water from first principles, Journal of Chemical Physics, 111 (1999) 3572-3580. [Back, 2, 3]
  91. K. Ichikawa, Y. Kameda, T. Yamaguchi, H. Wakita and M. Misawa, Neutron-diffraction investigation of the intramolecular structure of a water molecule in the liquid-phase at high-temperatures, Molecular Physics, 73 (1991) 79-86. [Back, 2]
  92. P. Jedlovszky, Voronoi polyhedra analysis of the local structure of water from ambient to supercritical conditions, Journal of Chemical Physics, 111 (1999) 5975-5985. [Back]
  93. P. Jedlovszky and J. Richardi, Comparison of different water models from ambient to supercritical conditions: A Monte Carlo simulation and molecular Ornstein-Zernike, Journal of Chemical Physics, 110 (1999) 8019-8031. [Back]
  94. G. W. Robinson, S. -B. Zhu, S. Singh, and M. W. Evans, Water in Biology, Chemistry and Physics: Experimental Overviews and Computational Methodologies, (World Scientific, Singapore, 1996). [Back, 2, 3, 4, 5]
    (The original SPC reference is H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren and J. Hermans, in B. Pullman (ed.), Intermolecular Forces (Reidel, Dordrecht, 1981) p331.)
  95. A. Eisenstein and N. S. Gingrich, The diffraction of X-Rays by argon in the liquid, vapor, and critical regions, Physical Review, 62 (1942) 261-270. [Back]
  96. E. D. Isaacs, A. Shukla, P. M. Platzman, D. R. Hamann, B. Barbiellini and C. A. Tulk, Compton scattering evidence for covalency of the hydrogen bond in ice, Journal of Physics and Chemistry of Solids, 61 (2000) 403-406. [Back]
  97. (a) H. S. Frank and W.-Y. Wen, Ion-solvent interaction. Structural aspects of ion-solvent interaction in aqueous solutions: a suggested picture of water structure, Faraday Discussions, 24 (1957) 133-140; Solid clathrtes of the tetramethylammonium ion have also been described ;(b) D. Mootz and R. Seidel, Polyhedral clathrate hydrates of a strong base: phase relations of crystal structures in the system tetramethylammonium hydroxide-water, J. Inclusion Phenomena, 8 (1990) 139-157. [Back, 2, 3, 4]
  98. M. I. Heggie, C. D. Latham, S. C. P. Maynard and R. Jones, Cooperative polarisation in ice Ih and the unusual strength of the hydrogen bond, Chemical Physics Letters, 249 (1996) 485-490. [Back]
  99. L. Pauling, The Nature, of the Chemical Bond, 2nd ed. (Cornell University Press, New York, 1948). [Back, 2, 3]
  100. C. N. R. Rao, Theory of hydrogen bonding in water, in Water A comprehensive treatise, Vol. 1, Ed. F. Franks (Plenum Press, New York, 1972) pp. 93-114. [Back] [Back to Top to top of page]

 

 

 

Home | Site Index | Site Map | Search | LSBU | Top

 

This page was established in 2000 and last updated by Martin Chaplin on 4 October, 2017


Creative Commons License
This work is licensed under a Creative Commons Attribution
-Noncommercial-No Derivative Works 2.0 UK: England & Wales License

 

The preferred Web Browser is Mozilla Firefox