Water site headerMasthead Island, Great Barrier Reef Print-me keygo to Water Visitor Book contributions
Go to my page Water Structure and Science

Water Structure and Science References 1001 - 1100

 

  1. Th. Strässle, A. M. Saitta, Y. Le Godec, G. Hamel, S. Klotz, J. S. Loveday and R. J. Nelmes, Structure of dense liquid water by neutron scattering to 6.5 GPa and 670 K, Phys. Rev. Lett. 96 (2006) 067801. [Back, 2]
  2. C. G. Salzmann, P. G. Radaelli, A. Hallbrucker, E. Mayer and J. L. Finney, The preparation and structure of hydrogen ordered phases of ice, Science 311 (2006) 1758-1761. [Back, 2, 3]
  3. J.-L. Kuo and W. F. Kuhs, A first principles study on the structure of ice-VI: Static distortion, molecular geometry and proton ordering, J. Phys. Chem. B 110 (2006) 3697-3703. [Back]
  4. V. I. Gaiduk and D. S. F. Crothers, Nonharmonic transverse vibration of the H-bonded molecules and the THz spectra in ice and water, J. Mol. Liq. 128 (2006) 145-160; see also their paper [1115]. [Back]
  5. S. N. Bhat, A. Sharma and S. V. Bhat, Vitrification and glass transition of water: insights from spin probe ESR, Phys Rev Lett. 95 (2005) 235702. [Back, 2]
  6. G .S. Kell, Effect of isotopic composition, temperature, pressure, and dissolved gases on the density of liquid water, J. Phys. Chem. Ref. Data 6 (1977), pp. 1109-1131. [Back]
  7. V. B. Polyakov, J. Horita and D. R. Cole, Pressure effects on the reduced partition function ratio
    for hydrogen isotopes in water, Geochim. Cosmochim. Acta 70 (2006) 1904-1913. [Back]
  8. H. Tang, T. Mitsunaga and Y. Kawamura, Molecular arrangement in blocklets and starch granule architecture, Carbohydr. Polym. 63 (2006) 555-560. [Back]
  9. A. M. Silva, E. C. da Silva and C. O. da Silva, A theoretical study of glucose mutarotation in aqueous solution, Carbohydr. Res. 341 (2006) 1029-1040. [Back]
  10. C. Robinson, C. S. Boxe, M. I. Guzmán, A. J. Colussi and M. R. Hoffmann, Acidity of frozen electrolyte solutions, J. Phys. Chem. B 110 (2006) 7613 -7616. [Back, 2]
  11. M. Henry, The state of water in living systems: from the liquid to the jellyfish, Cell. Mol. Biol. 51 (2005) 677-702; M. Henry, The state of water in living systems: from the liquid to the jellyfish, Aqua Incognita: why ice floats on water and Galileo 400 years on, Ed. P. Lo Nostro and B. W. Ninham, ISBN: 9781925138214 (Connor Court, Ballarat, 2014) pp 34-102. [Back, 2]
  12. E. Balomenos, D. Panias and I. Paspaliaris, A semi-empirical hydration model (SEHM) for describing aqueous electrolyte solutions I. Single strong electrolytes at 25 °C, Fluid Phase Equilib. 243 (2006) 29-37. [Back]
  13. B. J. Murray and A. K. Bertram, Formation and stability of cubic ice in water droplets, Phys. Chem. Chem. Phys. 8 (2006) 186-192. [Back]
  14. J. I. Katz, When hot water freezes before cold, arXiv:physics/0604224 (2006). [Back]
  15. H. Campins and M. J. Drake, Sources of terrestrial and martian water, In: Water and Life, ed. R. M. Lynden-Bell, S. Conway Morris, J. D. Barrow, J. L. Finney and C. L. Harper, Jr. (CRC Press, Boca Raton, 2010) pp 221-234; H. Campins, T. D. Swindle and D. A. Kring, Evaluating comets as a source of Earth’s water, In Origins, Evolution and Biodiversity of Microbial Life in the Universe. Ed. J. Seckbach (Kluwer, Dordrecht, 2004) pp. 569-591. [Back, 2]
  16. S. L.Miller, Production of amino acids under possible primitive earth conditions, Science 117 (1953) 528-529. [Back]
  17. J. T. Trevors and G. H. Pollack, Hydrogel origin of life; Hypothesis: the origin of life in a hydrogel environment, Progr. Biophys. Mol. Biol. 89 (2005) 1-8. Z. P. Zagórski, Radiation chemistry and origins of life on earth, Radiation Phys. Chem. 66 (2003) 329-334. W. Martin and M. J. Russell, On the origins of cells:a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells, Phil. Trans. R. Soc. Lond. B 358 (2003) 59-85. [Back]
  18. M. G. Govender, S. M. Rootman and T. A. Ford. An ab initio study of the properties of some hydride dimers. Crystal Engineering, 6 (2003) 263-286. [Back]
  19. B. Hribar, N. T. Southall, V. Vlachy and K. A. Dill, How ions affect the structure of water. J. Am. Chem.Soc.124 (2004 12302-12311. [Back]
  20. D. Tromans, Temperature and pressure dependent solubility of oxygen in water: a thermodynamic analysis. Hydrometallurgy, 48 (1998) 327-342. [Back]
  21. Z. Duan, and R. Sun, An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from, 0 to 2000 bar. Chem. Geol. 193 (2003) 257-271. [Back]
  22. D. C. Catling, C. R. Glein, K. J. Zahnle, and C. P. McKay, Why O2 is required by complex life on habitable planets and the concept of planetary "Oxygenation Time". Astrobiol. 5 (2005) 415-438. [Back]
  23. M. F. Chaplin. Water’s hydrogen bond strength, In: Water and Life, ed. R. M. Lynden-Bell, S. Conway Morris, J. D. Barrow, J. L. Finney and C. L. Harper, Jr. (CRC Press, Boca Raton, 2010) pp 69-86. arXiv:0706.1355. [Back]
  24. T. Head-Gordon and M. E. Johnson, Tetrahedral structure or chains for liquid water, PNAS, 103 (2006) 7973-7977; however note the significant error in Figure 3, T. Head-Gordon and M. E. Johnson, Correction for Head-Gordon et al., Tetrahedral structure or chains for liquid water, PNAS, 103 (2006) 16614-16615. [Back, 2]
  25. M. Boström, W. Kunz and B. W. Ninham, Hofmeister effects in surface tension of aqueous electrolyte solution, Langmuir 21 (2005) 2619-2623. [Back, 2] [Back to Top to top of page]
  26. M. Plazanet, C. Floare, M. R. Johnson, R. Schweins and H. P. Trommsdorff, Freezing on heating of liquid solutions, J. Chem. Phys. 121 (2004) 5031-5034. [Back, 2]
  27. G. S. Fanourgakis and S. S. Xantheas, The flexible, polarizable, Thole-type interaction potential for water (TTM2-F) revisited, J. Phys. Chem. A 110 (2006) 4100-4106. [Back]
  28. G. S. Fanourgakis and S. S. Xantheas, The bend angle of water in ice Ih and liquid water: The significance of implementing the nonlinear monomer dipole moment surface in classical interaction potentials, J. Chem. Phys. 124 (2006) 174504. [Back]
  29. C. J. Burnham and S. S. Xantheas, Development of transferable interaction models for water. I. Prominent features of the water dimer potential energy surface, J. Chem. Phys. 116 (2002) 1479-1492. [Back]
  30. M. T. Grijalba, M. Chéron, E. Borowski, J. Bolard and S. Schreier, Modulation of polyene antibiotics self-association by ions from the Hofmeister series, Biochim. Biophys. Acta 1760 (2006) 973-979. [Back]
  31. I. M. Mills, P. J. Mohr, T. J. Quinn, B. N. Taylor and E. R. Williams, Redefinition of the kilogram, ampere, kelvin and mole: a proposed approach to implementing CIPM recommendation 1 (CI-2005), Metrologia 43 (2006) 227-246; I. A. Robinson, Towards the redefinition of the kilogram: a measurement of the Planck constant using the NPL Mark II watt balance, Metrologia 49 (2012) 113. [Back]
  32. S. Woutersen and H. J. Bakker, Ultrafast vibrational and structural dynamics of the proton in liquid water, Phys. Rev. Lett. 96 (2006) 138305. [Back]
  33. K. B. Jinesh and J. W. M. Frenken, Capillary condensation in atomic scale friction: How water acts like a glue, Phys. Rev. Lett. 96 (2006) 166103. [Back]
  34. D. P. Shelton, Slow polarization relaxation in water observed by hyper-Rayleigh scattering, Phys. Rev. B 72 (2005) 020201. [Back]
  35. R. T. Hart, C. J. Benmore, J. Neuefeind, S. Kohara, B. Tomberli and P. A. Egelstaff, Temperature dependence of isotopic quantum effects in water, Phys. Rev. Lett. 94 (2005) 047801. [Back]
  36. S. P. L. Sørensen, Enzyme studies II Measurement and significance of hydrogen ion concentration in enzyme processes, Meddelelser fra Carlsberg Laboratoriet 8 (1909-10) 1-153; Translated and annotated by T. R. C. Boyde, In Foundation Stones of Biochemistry, (Voile et Aviron, Hong Kong, 1980, ISBN 963-7037-01-X) pp152-262. [Back]
  37. M. F. Cawley, D. McGlynn and P. A. Mooney, Measurement of the temperature of density maximum of water solutions using a convective flow technique, Int. J. Heat Mass Transfer 49 (2006) 1763-1772. [Back]
  38. B. Bhushan and Y. C. Jung, Micro- and nanoscale characterization of hydrophobic and hydrophilic leaf surfaces, Nanotechnology 17 (2006) 2758-2772. A. Tuteja, W. Choi, M. Ma, J. M. Mabry, S. A. Mazzella, G. C. Rutledge, G. H. McKinley and R. E. Cohen, Designing superoleophobic surfaces, Science 318 (2007)1618-1622. [Back]
  39. V. Elia, L. Elia, P. Cacace, E. Napoli, M. Niccoli and F. Savarese, The “extremely diluted solutions” as multi-variable systems: a study of calorimetric and conductometric behaviour as a function of the parameter time, J. Thermal Analysis Calorimetry 84 (2006) 317-323. [Back]
  40. (a) S.-H. Chen, F. Mallamace, C.-Y. Mou, M. Broccio, C. Corsaro, A. Faraone and L Liu, The violation of Stokes-Einstein relation in supercooled water, PNAS 103 (2006) 12974-12978, arXiv:cond-mat/0605431 v1 (2006); (b) P. Kumar, Breakdown of the Stokes-Einstein relation in supercooled water PNAS 103 (2006) 12955-12956; (c) M. G. Mazza, N. Giovambattista, H. E. Stanley and F. W. Starr, Connection of translational and rotational dynamical heterogeneities with the breakdown of the Stokes-Einstein and Stokes-Einstein-Debye relations in water, Phys. Rev. E 76 (2007) 031203. [Back, 2, 3]
  41. E. Gileadi and E. Kirowa-Eisner, Electrolytic conductivity—the hopping mechanism of the proton and beyond, Electrochim. Acta 51 (2006) 6003-6011. [Back, 2]
  42. T. D. Iordanov, G. K. Schenter and B. C. Garrett, Sensitivity analysis of thermodynamic properties of liquid water: a general approach to improve empirical potentials, J. Phys. Chem. A 110 (2006) 762-771. [Back]
  43. A. Fathi, T. Mohamed, G. Claude, G. Maurin and B. A. Mohamed, Effect of a magnetic water treatment on homogeneous and heterogeneous precipitation of calcium carbonate, Water Res. 40 (2006) 1941-1950. [Back]
  44. N. K. Alphonse, S. R. Dillon, R. C. Dougherty, D. K. Galligan and L. N. Howard, Direct Raman evidence for a weak continuous phase transition in liquid water, J. Phys. Chem. A. 110 (2006) 7577-7580. [Back]
  45. V. I. Gaiduk and D. S.F. Crothers, Influence of temperature on wideband water spectra:
    Semi-phenomenological calculation, J. Mol. Structure 798 (2006) 75-88. [Back, 2]
  46. V. T. Prisyazhniuk, Why "Magnetic treatment" prevents scale, Energy Exploration & Exploitation 23 (2005) 277-288. [Back]
  47. I. A. Kovács, M. S. Szalay and P. Csermely, Hypothesis: Water and molecular chaperones act as weak links of protein folding networks: Energy landscape and punctuated equilibrium changes point towards a game theory of proteins, FEBS Lett. 579 (2005) 2254-2260; R. J. Ellis, Molecular chaperones: assisting assembly in addition to folding, Trends Biochem. Sci. 31 (2006) 395-401. H. R Saibil, Chaperone machines in action, Curr. Opinion Struct. Biol. 18 (2008) 35-42. [Back]
  48. H. F. Pollick, Water fluoridation and the environment: current perspective in the United States, Int. J. Occup. Environ. Health 10 (2004) 343-350. P. Connett, Scientific evidence fails to support fluoridation of public water supplies. J. Occup. Environ. Health 11 (2005) 215-216. H. F. Pollick, Scientific evidence continues to support fluoridation of public water supplies. J. Occup. Environ. Health 11 (2005) 322-26. P. Connett, Water fluoridation—A public health hazard, J. Occup. Environ. Health 12 (2006) 88-91. [Back]
  49. R. T. Hart, Q. Mei, C. J. Benmore, J. Neuefeind, J. F. C. Turner, M. Dolgos, B. Tomberliand P. A. Egelstaff, Isotope quantum effects in water around the freezing point, J. Chem. Phys. 124 (2006) 134505. [Back]
  50. A.-L. Ferry, J. Hort, J. R. Mitchell, D. J. Cook, S. Lagarrigue and B. Valles Pamies, Viscosity and flavour perception: Why is starch different from hydrocolloids? Food Hydrocolloids 20 (2006) 855-862. [Back] [Back to Top to top of page]
  51. G. A.Tribello and B. Slater, Proton ordering energetics in ice phases, Chem. Phys. Lett. 425 (2006) 246-250. [Back]
  52. F. Despa, D. P. Orgill and R. C. Lee, Effects of crowding on the thermal stability of heterogeneous protein solutions, Ann. Biomed. Eng. 33 (2005) 1125-1131. [Back]
  53. S. A. Szobota and B. Rubinsky, Analysis of isochoric subcooling, Cryobiology 53 (2006) 139-142. [Back]
  54. (a) K. Okuyama, G. Wu, N. Jiravanichanun, C. Hongo and K. Noguchi, Helical twists of collagen model peptides, Biopolymers 84 (2006) 421-432. (b) K. Okuyama, X. Xu, M. Iguchi and K. Noguchi, Revision of collagen molecular structure, Biopolymers 84 (2006) 181-191. [Back]
  55. I. Brovchenko and A. Oleinikov, Four phases of amorphous water: Simulations versus experiment, J. Chem. Phys. 124 (2006) 164505. [Back, 2]
  56. Y. Yonetani, Liquid water simulation: A critical examination of cutoff length, J. Chem. Phys. 124 (2006) 204501. [Back]
  57. V. Birkedal, E. S. Yates Madsen, C. Petersen, M. Johnsen, A. Seegert, S. K. Jensen, S. R. Keiding and J. Thøgersen, Observation of a persistent infrared absorption following two photon ionization of liquid water, Chem. Phys. 328 (2006) 119-124. [Back]
  58. C. G. Salzmann, A. Hallbrucker, J. L. Finney and E. Mayer, Raman spectroscopic study of hydrogen ordered ice XIII and of its reversible transition to disordered ice V, Phys. Chem. Chem. Phys. 8 (2006) 3088-3093. [Back]
  59. D. Prendergast and G. Galli, X-ray absorption spectra of water from first principles calculations. Phys. Rev. Lett. 96 (2006) 215502. [Back]
  60. H. Zhao, J. H. Kwak, Y. Wang, J. A. Franz, J. M. White and J. E. Holladay, Interactions between cellulose and N-methylmorpholine-N-oxide, Carbohydr. Polymers 67 (2006) 97-103. [Back]
  61. J. Han, X. Zhou and H. Liu, Ab initio simulation on the mechanism of proton transport in water, J. Power Sources 161 (2006) 1420-1427. [Back, 2]
  62. S. Ansell, A.C. Barnes, P.E. Mason, G.W. Neilson and S. Ramos, X-ray and neutron scattering studies of the hydration structure of alkali ions in concentrated aqueous solutions, Biophys. Chem. 124 (2006) 171-179. [Back, 2]
  63. H. Zhao, Viscosity B-coefficients and standard partial molar volumes of amino acids, and their roles in interpreting the protein (enzyme) stabilization. Biophys. Chem. 122 (2006) 157–183. [Back, 2]
  64. A. A. Zavitsas, Aqueous solutions of calcium ions: hydration numbers and the effect of temperature, J. Phys. Chem. B Condens. Matter Mater. Surf. Interfaces Biophys. 109 (2005) 20636–20640. A. A. Zavitsas, The nature of aqueous solutions: Insights into multiple facets of chemistry and biochemistry from freezing-point depressions, Chem. Eur. J. 16 (2010) 5942-5960. [Back, 2, 3]
  65. R. Wagner, S. Benz, O. Möhler, H. Saathoff, M. Schnaiter, and U. Schurath, Mid-infrared extinction spectra and optical constants of supercooled water droplets. J. Phys. Chem. A 109 (2005) 7099-7112. [Back]
  66. (a) V. L. Voeikov, Biological significance of active oxygen-dependent processes in aqueous systems, In Water and the cell, Ed. G. H. Pollack, I. L. Cameron and D. N. Wheatley (Springer, Dordrecht, 2006) pp. 285-298. (b) V. L. Voeikov, The possible role of active oxygen in the memory of water, Homeopathy 96 (2007) 196-202; (c) L. V. Belovolova, M. V. Glushkov and E. A. Vinogradov, Influence of dissolved gases on highly diluted aqueous media, Biophysics 59 (2014) 524-530; Biofizika 59 (2014) 641–648. [Back, 2, 3, 4]
  67. D. M. Camaioni and C. A. Schwerdtfeger, Comment on “Accurate experimental values for the free energies of hydration of H+, OH-, and H3O+”, J. Phys. Chem. A 109 (2005) 10795-10797. [Back, 2, 3]
  68. J. Hernández-Rojas, J. Bretón, J. M. Gomez Llorente and D. J. Wales, Global potential energy minima of C60(H2O)n clusters, J. Phys. Chem. B 110 (2006) 13357-13362. [Back]
  69. B. Plesničar, Progress in the chemistry of dihydrogen trioxide (HOOOH), Acta Chim. Slov. 52 (2005) 1-12. [Back]
  70. S. Deguchi, K. Tsujiib and K. Horikoshi, Cooking cellulose in hot and compressed water, Chem. Commun. (2006) 3293-3295. [Back]
  71. P. P. Fernández, M. N. Martino, N. E. Zaritzky, B. Guignon and P. D. Sanz, Effects of locust bean, xanthan and guar gums on the ice crystals of a sucrose solution frozen at high pressure, Food Hydrocolloids 21 (2006) 507-515. [Back]
  72. S. A. Brandán, S. B. Díaz, R. Cobos Picot, E. A. Disalvo and A. Ben Altabef, Hydration of inorganic phosphates in crystal lattices and in aqueous solution An experimental and theoretical study, Spectrochim. Acta A 66 (2006) 1152-1164. [Back, 2]
  73. S. Singh, J. Houston, F. van Swol and C. J. Brinker, Drying transition of confined water, Nature 442 (2006) 526. [Back]
  74. P. O. Risman and B. Wäppling-Raaholt, Retro-modelling of a dual resonant applicator and accurate dielectric properties of liquid water from −20 °C to +100 °C, Meas. Sci. Technol. 18 (2007) 959-966. [Back]
  75. J. Teixeira., A. Luzar and S. Longeville , Dynamics of hydrogen bonds: how to probe their role in the unusual properties of liquid water, J. Phys.: Condens. Matter 18 (2006) S2353-S2362. [Back] [Back to Top to top of page]
  76. B. Sun, S. Kunitomo and C. Igarashi, Characteristics of ultraviolet light and radicals formed by pulsed discharge in water, J. Phys. D: Appl. Phys. 39 (2006) 3814-3820. [Back]
  77. S. Kara, E. Arda, B. Kavzak and Ö. Pekcan, Phase transitions of κ-carrageenan gels in various types of salts, J. Appl. Polymer Sci. 102 (2006) 3008-3016. [Back]
  78. L. Liu, S.-H. Chen, A. Faraone, C.-W. Yen, C.-Y. Mou, A. I. Kolesnikov, E. Mamontov and J. Leao, Quasielastic and inelastic neutron scattering investigation of fragile-to-strong crossover in deeply supercooled water confined in nanoporous silica matrices, J. Phys.: Condens. Matter 18 (2006) S2261-S2284. [Back]
  79. A. A. Chialvo, A. Bartók and A. Baranyai, On the re-engineered TIP4P water models for the prediction of vapor–liquid equilibrium, J. Mol. Liq. 129 (2006) 120-124. A. Baranyai, A. Bartók and A. A. Chialvo, Testing the adequacy of simple water models at the opposite ends of the phase diagram, J. Mol. Liq. 134 (2007) 15-22; I. Shvab and R. J. Sadus, Intermolecular potentials and the accurate prediction of the thermodynamic properties of water, J. Chem. Phys. 139 (2013) 194505-194505. [Back]
  80. G. Graziano, Non-intrinsic contribution to the partial molar volume of cavities in water, Chem. Phys. Lett. 429 (2006) 420-424. [Back]
  81. C. G. Salzmann, A. Hallbrucker, J. L. Finney and E. Mayer, Raman spectroscopic features of hydrogen-ordering in ice XII, Chem. Phys. Lett. 429 (2006) 469-473. [Back]
  82. R. Sharma, S. N. Chakraborty and C. Chakravarty, Entropy, diffusivity and structural order in liquids with water-like anomalies, arXiv:cond-mat/0607403 (2006). [Back]
  83. M. Hakala, K. Nygård, S. Manninen, S. Huotari, T. Buslaps, A. Nilsson, L. G. M. Pettersson and K. Hämäläinen, Correlation of hydrogen bond lengths and angles in liquid water based on Compton scattering, J. Chem. Phys. 125 (2006) 084504. [Back]
  84. A. H. Castro Neto, P. Pujol and E. Fradkin, Ice: a strongly correlated proton system, Phys. Rev. B 74 (2006) 024302, arXiv:cond-mat/0511092. [Back]
  85. L. Starovoytova and J. Spĕváček, Effect of time on the hydration and temperature-induced phase separation in aqueous polymer solutions. 1H NMR study, Polymer 47 (2006) 7329-7334. [Back]
  86. J. Teissie, Biophysical effects of electric fields on membrane water interfaces: a mini review, Eur. Biophys. J. Biophys. Lett. 36 (2007) 967-972. [Back]
  87. C. Knight and S. J. Singer, A re-examination of the ice III/IX hydrogen bond ordering phase transition, J. Chem. Phys. 125 (2006) 064506. [Back]
  88. A. F. Jalbout, L. Adamowicz and L. M. Ziurys, Conformational topology of ribose: A computational study, Chem. Phys. 328 (2006) 1-7. [Back]
  89. N. Takenaka, M. Tanaka, K. Okitsu and H. Bandow, Rise in the pH of an unfrozen solution in ice due to the presence of NaCl and promotion of decomposition of gallic acids owing to a change in the pH, J. Phys. Chem. A 110 (2006) 10628-10632. [Back]
  90. B. A. Berg, C. Muguruma and Y. Okamoto, Residual entropy of ordinary ice from multicanonical simulations, Phys. Rev. B 75 (2007) 092202; arXiv:cond-mat/0609211. [Back]
  91. R. Heyrovska, Dependence of ion–water distances on covalent radii, ionic radii in water and distances of oxygen and hydrogen of water from ion/water boundaries, Chem. Phys. Lett. 429 (2006) 600-605. R. Heyrovska, Dependences of molar volumes in solids, partial molal and hydrated ionic volumes of alkali halides on covalent and ionic radii and the golden ratio, Chem. Phys. Lett. 436 (2007) 287-293. [Back]
  92. C. A. Wraight, Chance and design—Proton transfer in water, channels and bioenergetic proteins, Biochim. Biophys. Acta 1757 (2006) 886-912. [Back]
  93. M. F. Chaplin, Opinion: Do we underestimate the importance of water in cell biology? Nature Rev. Mol. Cell Biol. 7 (2006) 861-866. [Back, 2, 3]
  94. M. J. Higgins, M. Polcik, T. Fukuma, J. E. Sader, Y. Nakayama and S. P. Jarvis, Structured water layers adjacent to biological membranes, Biophys. J. 91 (2006) 2532-2542. [Back]
  95. C. A. Stortz, MM3 Potential energy surfaces of trisaccharide models of λ-, μ- and ν-carrageenans, Carbohydr. Res. 341 (2006) 2531-2542. [Back]
  96. B. Jana, S. Pal, P. K. Maiti, S. T. Lin, J. T. Hynes and B. Bagchi, Entropy of water in the hydration layer of major and minor grooves of DNA. J. Phys. Chem. B Condens. Matter Mater. Surf. Interfaces Biophys. 110 (2006) 19611-19618. [Back]
  97. S. Saito and I. Ohmine, Fifth-order two-dimensional Raman spectroscopy of liquid water, crystalline ice Ih and amorphous ices: Sensitivity to anharmonic dynamics and local hydrogen bond network structure J. Chem. Phys. 125 (2006) 084506. [Back]
  98. H. Kumano, T. Asaoka, A. Saito and S. Okawa, Study on latent heat of fusion of ice in aqueous solutions, Int. J.f Refrigeration 30 (2006) 267-273. The papers cited are N. E. Dorsey, Properties of ordinary water substances, Reinhold, New York, 1940, and C. A. Angell, M. Oguni and W. J. Slchina, Heat capacity of water at extremes of supercooling and superheating, J. Phys. Chem. 86 (1982) 998-1002. [Back]
  99. R. Feistel and W. Wagner, Sublimation pressure and sublimation enthalpy of H2O ice Ih
    between 0 and 273.16 K, Geochim. Cosmochim. Acta 71 (2006) 36-45. [Back]
  100. G. D. Fullerton, C. R. Keener and I. L. Cameron, Correction for solute/solvent interaction extends accurate freezing point depression theory to high concentration range. J. Biochem. Biophys. Methods. 29 (1994) 217-235. [Back] [Back to Top to top of page]

 

 

 

Home | Site Index | Site Map | Search | LSBU | Top

 

This page was established in 2006 and last updated by Martin Chaplin on 15 August, 2017


Creative Commons License
This work is licensed under a Creative Commons Attribution
-Noncommercial-No Derivative Works 2.0 UK: England & Wales License