Water site headerMasthead Island, Great Barrier Reef Print-me keygo to Water Visitor Book contributions
Go to my page Water Structure and Science

Water Structure and Science References 1101 - 1200

 

  1. S. J. Hawkes, Strategic consequences from errors in Raoult's law paper, J. Chem. Educ. 73 (1996) 41. [Back]
  2. K. Takaizumi, A curious phenomenon in the freezing-thawing process of aqueous ethanol solution, J. Solution Chem. 34 (2005) 597-612. [Back, 2, 3]
  3. G. D. Fullerton, K. M. Kanal and I. L. Cameron, Osmotically unresponsive water fraction on proteins: Non-ideal osmotic pressure of bovine serum albumin as a function of pH and salt concentration, Cell Biol. Int. 30 (2006) 86-92. G. D. Fullerton, K. M. Kanal and I. L. Cameron, On the osmotically unresponsive water compartment in cells, Cell Biol. Int. 30 (2006) 74-77. [Back]
  4. A. Yokozeki, Osmotic pressures studied using a simple equation-of-state and its applications, Appl. Energy 83 (2006) 15-41. [Back]
  5. G. A. Tribello, B. Slater and C. G. Salzmann, A blind structure prediction of ice XIV, J. Am. Chem. Soc. 128 (2006) 12594-12595. [Back]
  6. M. M. Rhodes, K. Réblova, J. Špooner and N. G. Walter, Trapped water molecules are essential to structural dynamics and function of a ribozyme, PNAS 103 (2006) 13380-13385. [Back]
  7. C. G. McCarty and E. Vitz, pH paradoxes: Demonstrating that it is not true that pH =  -Log(H+), J. Chem. Educ. 83 (2006) 752-757. [Back]
  8. R. Heyrovská, Volumes of ions, ion pairs, and electrostriction of alkali halides in aqueous solutions at 25 °C, Marine Chem. 70 (2000) 49-59. [Back]
  9. J. Yang and E. G. Wang, Reaction of water on silica surfaces, Curr. Opin. Solid State Mat. Sci. 10 (2006) 33-39; J.-L. Demangeat, P. Gries, B. Poitevin, J.-J. Droesbeke, T. Zahaf, F. Maton, C. Piérart and R. N. Muller, Low-field NMR water proton longitudinal relaxation in ultrahighly diluted aqueous solutions of silica-lactose prepared in glass material for pharmaceutical use. Appl Magn Reson 26 ( 2004) 465-481. [Back]
  10. H. P. Diogo and J. J. Moura Ramos, Are crystallization and melting the reverse transformation of each other? J. Chem. Educ. 83 (2006) 1389-1392. [Back]
  11. H. G. Williams, 'And not a drop to drink'-- why water is harmful for newborns, Breastfeeding Rev. Prof. Publ. Nursing Mothers' Ass. Australia, 14 (2006) 5-9. [Back]
  12. Y. Thomas, L. Kahhak and J. l Aissa, The physical nature of the biological signal, A puzzling phenomenon: the critical contribution of Jacques Benveniste, In Water and the cell, Ed. G. H. Pollack, I. L. Cameron and D. N. Wheatley (Springer, Dordrecht, 2006) pp. 325-340. [Back]
  13. P. Lo Nostro, B. W. Ninham, S. Milani, A. Lo Nostro, G. Pesavento and P. Baglioni, Hofmeister effects in supramolecular and biological systems, Biophys. Chem. 124 (2006) 208-213. [Back]
  14. V. N. McCarthy and K. D. Jordan, Structure and stability of the (H2O)21 and (H2O)20·(H2S)
    clusters: Relevance of cluster systems to gas hydrate formation, Chem. Phys. Lett. 429 (2006) 166-168. [Back, 2]
  15. J. Teixeira, In appendix to, V. I. Gaiduk and D. S. F. Crothers, Influence of temperature on wideband water spectra: Semi-phenomenological calculation, J. Mol.Struct. 798 (2006) 75-88 [Back]
  16. A. Kruse and E. Dinjus, Hot compressed water as reaction medium and reactant: Properties and synthesis reactions, J. Supercrit. Fluids 39 (2007) 362-380. [Back]
  17. J. Han, X. Zhou and H. Liu, Ab initio simulation on the mechanism of proton transport in water, J. Power Sources 161 (2006) 1420-1427. [Back]
  18. Z. Ao and J. Jane, Characterization and modeling of the A- and B-granule starches of wheat, triticale, and barley, Carbohydr. Polymers 67 (2007) 46-55. [Back]
  19. A. Nose and M. Hojo, Hydrogen bonding of water–ethanol in alcoholic beverages, J. Biosci. Bioeng. 102 (2006) 269-280. [Back]
  20. R. Souda, Liquid-liquid transition in supercooled water investigated by interaction with LiCl and Xe, J. Chem. Phys. 125 (2006) 181103. [Back, 2]
  21. M. R. Conde, Properties of aqueous solutions of lithium and calcium chlorides: formulations for use in air conditioning equipment design, Int. J.Thermal Sci. 43 (2004) 367-382. [Back]
  22. T. Loerting and N. Giovambattista, Amorphous ices: experiments and numerical simulations, J. Phys.: Condens. Matter 18 (2006) R919-R977. [Back]
  23. J. E. K. Schawe, A quantitative DSC analysis of the metastable phase behavior of the sucrose–water system, Thermochim. Acta 451 (2006) 115-125. [Back]
  24. M. Y. Kiriukhin, K. D. Collins, Dynamic hydration numbers for biologically important ions, Biophys. Chem. 99 (2002) 155-168. [Back]
  25. C. D. Cappa, J. D. Smith, B. M. Messer, R. C. Cohen and R. J. Saykally, Effects of cations on the hydrogen bond network of liquid water: New results from X-ray absorption spectroscopy of liquid microjets, J. Phys. Chem. B 110 (2006) 5301-5309. [Back] [Back to Top to top of page]
  26. T. M. Seward, C. M. B. Henderson, O. M. Suleimenov and J. M. Charnock, X-ray absorption spectroscopic studies of halide ion hydration in hydrothermal solutions, Geochim. Cosmochim. Acta 70 (2006) A572. [Back]
  27. L. I. Leake, Water activity and food quality, Food technology 60 (2006) 62-67. [Back]
  28. F. Caupin and E. Herbert, Cavitation in water: a review, C. R. Physique 7 (2006) 1000-1017. [Back]
  29. Y. Katsir, L. Miller, Y. Aharonov and E. Ben-Jacob, The effect of rf-irradiation on electrochemical deposition and its stabilization by nanoparticle doping, J. Am.Electrochem. Soc. 154 (2007) D249-D259; N. Gavrilov-Yusim, E. Hahiashvili, M. Tashker, V.Yavelsky, O. Karnieli, L. Lobel, Enhancement of hybridoma formation, clonability and cell proliferation in a nanoparticle-doped aqueous environment, BMC Biotechnol. 8:3 (2008) doi:10.1186/1472-6750-8-3. [Back, 2, 3]
  30. Y. L. A. Rezus and H. J. Bakker, Effect of urea on the structural dynamics of water, PNAS 103 (2006) 18417-18420. [Back, 2]
  31. N. Derkaoui, S. Said, Y. Grohens, R. Olier and M. Privat, PEG400 novel phase description in water, J. Colloid Interface Sci 305 (2007) 330-338. [Back]
  32. Y. Zhang and P. S Cremer, Interactions between macromolecules and ions: the Hofmeister series, Curr. Opin. Chem. Biol. 10 (2006) 658-663. Y. Zhang and P. S Cremer, Chemistry of Hofmeister anions and osmolytes, Annu. Rev. Phys. Chem. 61(2010) 63-83. [Back]
  33. M, Smiechowski and J. Stangret, Proton hydration in aqueous solution: Fourier transform infrared studies of HDO spectra, J. Chem. Phys. 125 (2006) 204508. [Back]
  34. C. A. Chatzidimitriou-Dreismann, Attosecond quantum entanglement in neutron Compton scattering from water in the keV range, Physica B 385-386 (2006) 1-6. [Back]
  35. D. Laage and J, T. Hynes, Do more strongly hydrogen-bonded water molecules reorient more slowly ? Chem. Phys. Lett. 433 (2006) 80-85. [Back]
  36. P. L. Privalov, A. I. Dragan, C. Crane-Robinson, K. J. Breslauer, D. P. Remeta and C. A. S. A. Minetti, What drives proteins into the major or minor grooves of DNA? J. Mol. Biol. 365 (2007) 1-9. [Back]
  37. T. M. Kaethner and A. D. Bangham, Selective compartmentation of the hydration products of carbon dioxide in liposomes, and its role in regulating water movement, Biochim Biophys. Acta 468 (1977) 157-161. [Back]
  38. S. Jenkins, S. R. Kirk and P. W. Ayers, The chemical character of very high-pressure ice phases, in Physics and Chemistry of Ice, ed. W. Kuhs (Royal Society of Chemistry, Cambridge, 2007) pp. 265-272. [Back]
  39. H. W. Kreuzer-Martin, M. J. Lott, J. R. Ehleringer and E. L. Hegg , Metabolicprocesses account for the majority of the intracellular water in log-phase Escherichia coli cells as revealed by hydrogen isotopes, Biochemistry 45 (2006), 13622-13630. [Back]
  40. J. Löwe, H. Li, K. H. Downing and E. Nogales, Refined structure of αβ-tubulin at 3.5 Å resolution, J. Mol. Biol. 313 (2001) 1045-1057. [Back]
  41. H. Herrmann and U. Aebi, Intermediate filaments: Molecular structure, assembly mechanism, and integration into functionally distinct intracellular scaffolds, Annu. Rev. Biochem. 73 (2004) 749-789. [Back]
  42. J. A. Dean, Lange's Handbook of Chemistry, 15th ed., (McGraw-Hill, New York, 1999). [Back]
  43. V. Elia, L. Elia, M. Marchese, M. Montanino, E. Napoli, M. Niccoli, L. Nonatelli and F. Savarese, Interaction of “extremely diluted solutions” with aqueous solutions of hydrochloric acid and sodium hydroxide. A calorimetric study at 298 K, J. Mol. Liq. 130 (2007) 15-20. V. Elia, E. Napoli and R. Germano, The “memory of water”: an almost deciphered enigma. Dissipative structures in the extremely diluted aqueous solutions of the homeopathic medicine, Homeopathy 96 (2007) 163-169. [Back]
  44. H. Hirai, T. Tanaka, T. Kawamura, Y. Yamamoto and T. Yagi, Structural changes in gas hydrates and existence of a filled ice structure of methane hydrate above 40 GPa, J. Phys. Chem. Solids 65 (2004) 1555-1559. [Back]
  45. WHO, Nutrients in drinking water, (World Health Organization, 2005). [Back]
  46. W.-B. Ko, Y.-H. Park and M.-K. Jeong, Preparation of a water-soluble fullerene [C70] under
    ultrasonic irradiation, Ultrasonics 44 (2006) e367-e369. [Back]
  47. (a) I. A. Stepanov, (δS/δV)U is negative for substances with negative thermal expansion, , In: Trends in Chemical Physics Research, Ed. A. N. Linke (Nova Science Publ. Inc., Hauppauge, New York, 2006) pp. 129-134; (b) I. A. Stepanov, Thermodynamics of iodine under high pressure at low temper atures, Physica B 349 (2004) 251-253; (c) I. A. Stepanov, Calculation of phase transitions in ice which do not obey the Clapeyron equation, Chemical Physics Research Trends, 252, Ed. S. V. Arnold (Nova Science Publ. Inc., Hauppauge, New York, 2007) pp. 335-341. [Back, 2]
  48. M. Sedlák, Large-scale supramolecular structure in solutions of low molar mass compounds and mixtures of liquids: I. Light scattering characterization, J. Phys. Chem. B 110 (2006) 4329-4338; M. Sedlák, Large-scale supramolecular structure in solutions of low molar mass compounds and mixtures of liquids: II. Kinetics of theformation and long-time stability, J. Phys. Chem. B 110 (2006) 4339-4345; M. Sedlák, Large-scale supramolecular structure in solutions of low molar mass compounds and mixtures of liquids: III. Correlation with molecular properties and interactions, J. Phys. Chem. B 110 (2006) 13976-13984. [Back, 2, 3, 4, 5]
  49. B. Li, D. O. V. Alonso and V. Daggett, The molecular basis for the inverse temperature transition of elastin, J. Mol. Biol. 305 (2001) 581-592. [Back]
  50. S. M. Pershin, Two-liquid water, Phys. Wave Phenomena 13 (2005) 192-208; S. M. Pershin. Harmonic oscillations of the concentration of H-bonds in liquid water, Laser Phys. 16 (2006) 1184-1190. [Back, 2, 3] [Back to Top to top of page]
  51. S. C. Santucci, D. Fioretto, L. Comez, A. Gessini and C. Masciovecchio, Is there any fast sound in water? Phys. Rev. Lett. 97 2006) 225701. [Back, 2]
  52. O. I. Povarova, I. M. Kuznetsova and K. K. Turoverov, Different disturbances – one pathway of protein unfolding: Actin folding-unfolding and misfolding, Cell Biol. Int. 31 (2007) 405-412. [Back]
  53. L. R. Pratt, A. Pohorille and D. Asthagir, What is special about water as a matrix of life? (2007) arXiv:physics/0701282v1. [Back]
  54. W. Wagner, J. R. Cooper, A. Dittmann, J. Kijima, H.-J. Kretzschmar, A. Kruse, R. Mare, K. Oguchi, H. Sato, I. Stöcker, O. Šifner, Y. Takaishi, I. Tanishita, J. Trübenbach and Th. Willkommen, The IAPWS industrial formulation 1997 for the thermodynamic properties of water and steam, ASME J. Eng. Gas Turbines and Power 122 (2000) 150-182; data was calculated using the Excel add-in provided by B. Spang, accessed 1 Feb. 2007. [Back]
  55. O. Andersson, Dielectric relaxation of low-density amorphous ice under pressure, Phys. Rev. Lett. 98 (2007) 057602. [Back, 2]
  56. A. Hildebrandt, R. Blossey, S. Rjasanow, O. Kohlbacher and H.-P. Lenhof, Electrostatic potentials of proteins in water: a structured continuum approach, Bioinformatics 23 (2006) e99–e103. [Back]
  57. A. O. Phillips and G. O. Phillip., Biofunctional behaviour and health benefits of a specific gum arabic, Food Hydrocolloids 25 (2011) 165-169. [Back]
  58. X. Tadeo, M. Pons and O. Millet, Influence of the Hofmeister anions on protein stability as studied by thermal denaturation and chemical shift perturbation, Biochemistry 46 (2007) 917-923. [Back]
  59. M. Leetmaa, M. Ljungberg, H. Ogasawara, M. Odelius, L.-Å. Näslund, A. Nilsson and L. G. M. Pettersson, Are recent water models obtained by fitting diffraction data consistent with infrared/Raman and x-ray absorption spectra? J. Chem. Phys. 125 (2006) 244510. [Back]
  60. O. Andersson, Relaxation time of water’s high-density amorphous ice phase, Phys. Rev. Lett. 95 (2005) 205503; O. Andersson and A. Inaba, Dielectric properties of high-density amorphous ice under pressure, Phys. Rev. B 74 (2006) 184201. [Back]
  61. O. N. Pestova, Yu. P. Kostikov and M. K. Khripun, X-ray phase analysis of structure of water salt NaCl-H2O and KCl-H2O, Russian J. Appl. Chem. 77 (2004) 1066-1069. [Back]
  62. A. I. Erokhin, Water structure and supergigahertz phonons, J. Russian Laser Res. 23 (2002) 369-380. [Back]
  63. J.-P. Luminet, J. Weeks, A. Riazuelo, R. Lehoucq and J.-P. Uzan, Dodecahedral space topology as an explanation for weak wide-angle temperature correlations in the cosmic microwave background, Nature 425 (2003) 593-595; C. Seife, Polyhedral model gives the universe an unexpected twist, Science 302 (2003) 209; N. J. Cornish, D. N. Spergel, G. D. Starkman and E. Komatsu, Constraining the topology of the Universe, Phys. Rev. Lett. 92(2004) 201302; J. Weeks and J. Gundermann, Dodecahedral topology fails to explain quadrupole-octupole alignment, arXiv:astro-ph/0611640 (2006). [Back]
  64. H. L. Bagger, C. C. Fuglsang and P. Westh, Hydration of a glycoprotein: relative water affinity of peptide and glycan moieties, Eur. Biophys. J. 35 (2006) 367-371. [Back]
  65. H. Donald, B. Jenkins and Y. Marcus, Viscosity B-coefficients of ions in solution, Chem. Rev. 95 (1995) 2695-2724. [Back]
  66. E. V. Ivanov, E. J. Lebedeva, V. K. Abrosimov and N. G. Ivanova, Structural contribution to the effect of hydrophobic hydration of noble gases, J. Struct. Chem. 46 (2005) 253-263; E. V. Ivanov and V. K. Abrosimov, Estimation of solubility and thermodynamic characteristics of solvation of radon in deuterated water at 0.1 MPa and 278-318 K, Radiochemistry 48 (2006) 244-248. [Back]
  67. Y. Zhang and Z. Xu, Atomic radii of noble gas elements in condensed phases, American Mineralogist 80 (1995) 670-675. The radon value is from [27]. [Back, 2]
  68. E. V. Ivanov and V. K. Abrosimov, Specific features of hydration of gaseous nitrogen
    and oxygen, revealed from data on their solubility in water H/D isotopomers, Russian J. Gen. Chem. 75 (2005) 1851-1856. [Back]
  69. Y. Kameda, M. Sasaki, M. Yaegashi, K. Tsuji, S. Oomori, S. Hino and T. Usuki, Hydration structure around the carboxyl group studied by neutron diffraction with 12C/13C and H/D isotopic substitution methods, J. Solution Chem. 33 (2004) 733-745. [Back]
  70. R. D. Oparin, M. V. Fedotova and V. N. Trostin, Relationship between the structural state of water and the character of ion hydration in concentrated 1:1 aqueous solutions of electrolytes in extreme conditions, J. Structural Chem. 43 (2002) 467-472. [Back]
  71. Y. Hayashi, Y. Katsumoto, S. Omori, N. Kishii and Akio Yasuda, Liquid structure of the urea-water system studied by dielectric spectroscopy, J. Phys. Chem. B 111 (2007) 1076-1080. [Back]
  72. F. Jin, J. Ye, L. Hong, H. Lam and C. Wu, Slow relaxation mode in mixtures of water and organic molecules: supramolecular structures or nanobubbles?J. Phys. Chem. B Condens. Matter Mater. Surf. Interfaces Biophys. 111 (2007) 2255-2261. [Back, 2, 3, 4, 5]
  73. S. Shimokawa1, T. Yokono, M. Yokono, T. Yokokawa and T. Araiso, Effect of sunlight on liquid structure of water, Jap. J. Appl. Phys. 46 (2007) 333-335. [Back, 2]
  74. D. Assafrão and J. R. Mohallem, The isotopic dipole moment of HDO, J. Phys. B: At. Mol. Opt. Phys. 40 (2007) F85-F91. [Back]
  75. A. Poynor, L. Hong, I. K. Robinson and S. Granick, How water meets a hydrophobic surface, Phys. Rev. Lett. 97 (2006) 266101. [Back] [Back to Top to top of page]
  76. (a) N. Y. Sidorova and D. C. Rau, Role of water in the EcoRI-DNA Binding, In Restriction Nucleases, Springer Verlag, ed. A. M. Pingoud, Nucleic Acids and Molecular Biology 14 (2004) 319-335; (b) N. Y. Sidorova and D. C. Rau, Differences between EcoRI nonspecific and ‘‘Star’’ sequence complexes revealed by osmotic stress, Biophys. J. 87 (2004) 2564-2576; (c) J. Sun, H. Viadiu, A. K. Aggarwal and H. Weinstein, Energetic and structural considerations for the mechanism of protein sliding along DNA in the nonspecific BamHI-DNA complex, Biophys. J. 84 (2003) 3317-3325; A. Marcovitz, A. Naftaly and Y. Levy, Water organization between oppositely charged surfaces: Implications for protein sliding along DNA, J. Chem. Phys. 142 (2015) 085102. [Back]
  77. J. L Finney, Bernal and the structure of water, J. Phys.: Conf. Ser. 57 (2007) 40-52. [Back]
  78. L. Hecht, A Keplerian solution to the quasicrystal problem, 21st Century Sci. Technol. 18 (2005) 6-9; C. Xiao, N. Fujita, K. Miyasaka, Y. Sakamoto and O. Terasaki, Dodecagonal tiling in mesoporous silica, Nature 487(2012) 349-353. [Back]
  79. A. Müller and S. Roy, En route from the mystery of molybdenum blue via related manipulatable building blocks to aspects of materials science, Coord. Chem. Rev. 245 (2003) 153–166. [Back]
  80. (a) A. Müller, E. Diemann, C. Kuhlmann, W. Eimer, C. Serain, T. Tak, A. Knöchel and P. K. Pranzas, Hierarchic patterning: architectures beyond ‘giant molecular wheels’ Chem. Commun. (2001) 1928-1929; (b) T. Liu, E. Diemann, H. Li, A. W. M. Dress, A. Müller, Self-assembly in aqueous solution of wheel-shaped Mo154 oxide clusters into vesicles, Nature 426 (2003) 59-62. [Back]
  81. A. Oleinikova, H. Weingärtner, M. Chaplin, E. Diemann, H. Bögge and A. Müller, Self-association based on glue type interfacial/confined highly structured water leads to {Mo154}~1165 super-clusters: A dielectric relaxation study,ChemPhysChem 8 (2007) 646-649. [Back]
  82. A. Müller, S. K. Das, V. P. Fedin, E. Krickemeyer, C. Beugholt, H. Bögge, M. Schmidtmann and B. Hauptfleisch, Rapid and simple isolation of the crystalline molybdenum-blue compounds with discrete and linked nanosized ring-shaped anions: Na15[MoVI126MoV28O462H14(H2O)70]0.5[MoVI124MoV28O457H14(H2O)68]0.5.ca. 400 H2O and Na22[MoVI118MoV28O442H14(H2O)58].ca. 250 H2O, Z. Anorg. Allg. Chem. 625 (1999) 1187-1192. [Back, 2]
  83. M. F. Chaplin, Water structuring at colloidal surfaces, In. Surface Chemistry in Biomedical and environmental Science , Ed. J. Blitz and V. Gun’ko, NATO Security Through Science Series, Springer (2006) pp. 1-10. [Back, 2]
  84. H. Chang, When water does not boil at the boiling point, Endeavour 31 (2007) 7-11. [Back]
  85. W. J. Ellison, Permittivity of pure water, at standard atmospheric pressure, over the
    frequency range 0–25 THz and the temperature range 0–100 °C, J. Phys. Chem. Ref. Data, 36 (2007) 1-18. [Back, 2]
  86. S. N. Andreev, V. P. Makarov, V. I. Tikhonov, and A. A. Volkov, Ortho and para molecules of water in electric field, arxiv.org/abs/physics/0703038 (2007). [Back, 2]
  87. K. F. Lim, Negative pH does exist, J. Chem. Educ. 83 (2006) 1465. [Back]
  88. M. L. Campbell and B. A. Waite, The Ka values of water and the hydronium ion for comparison with other acids, J. Chem. Ed. 67 (1990) 386-388; W. G. Baldwin and C. E. Burchill, Standard states for water equilibrium, J. Chem. Ed. 69 (1990) 256-257; M. L. Campbell and B. A. Waite, reply to Standard states for water equilibrium, J. Chem. Ed. 69 (1990) 257; D. Keeports, Equilibrium constants and water activity, J. Chem. Educ. 82 (2005) 999; E. J. Behrman, Equilibrium constants and water activity revisited, J. Chem. Educ. 83 (2005) 1290; D. Keeports, Equilibrium constants and water activity revisited, The author replies, J. Chem. Educ. 83 (2005) 1290. [Back]
  89. R. Bukowski, K. Szalewicz, G. C. Groenenboom and A. van der Avoird, Predictions of the properties of water from first principles, Science 315 (2007)1249-1252. [Back]
  90. K. D. Collins, G. W. Neilson and J. E. Enderby, Ions in water: Characterizing the forces that control chemical processes and biological structure, Biophys. Chem. 128 (2007) 95-104. [Back, 2, 3]
  91. V. A. Shepherd, The cytomatrix as a cooperative system of macromolecular and water networks, Curr. Topics Develop. Biol. 75 (2006) 171-223. [Back]
  92. S. I. Mussatto and I. M. Mancilha, Non-digestible oligosaccharides: A review, Carbohydr. Polymers 68 (2007) 587-559. [Back]
  93. E. Bertoft, On the nature of categories of chains in amylopectin and their connection to the super helix model, Carbohydr. Polymers 57 (2004) 211-224. [Back]
  94. Z. Szolnoki, A dynamically changing intracellular water network serves as a universal regulator of the cell: The water-governed cycle, Biochem. Biophys. Res. Comm. 357 (2007) 331-334. [Back]
  95. D. Liu, Y. Zhang, C.-C. Chen, C.-Y. Mou, P. H. Poole and S.-H. Chen, Observation of the density minimum in deeply supercooled confined water, PNAS 104 (2007) 9570-9574; arXiv:0704.2221. [Back]
  96. U. Heugen, G. Schwaab, E. Bründermann, M. Heyden, X. Yu, D. M. Leitner and M. Havenith, Solute-induced retardation of water dynamics probed directly by terahertz spectroscopy, PNAS 103 (2006) 12301-12306. [Back]
  97. S.-H. Chen, L. Liu, E. Fratini, P. Baglioni, A. Faraone and E. Mamontov, Observation of fragile-to-strong dynamic crossover in protein hydration water, PNAS 103 (2006) 9012-9016. J. Swenson1, H. Jansson, J. Hedström and R. Bergman, Properties of hydration water and its role in protein dynamics, J. Phys.: Condens. Matter 19 (2007) 205109; F. Mallamace, P. Baglioni, C. Corsaro, S.-H. Chen, D. Mallamace, C. Vasi and H. E. Stanley, The influence of water on protein properties, J. Chem. Phys. 141 (2014) 165104. [Back]
  98. O. Markovitch and N. Agmon, Structure and energetics of the hydronium hydration shells, J. Phys. Chem. A 111 (2007) 2253-2256. [Back]
  99. X. Xu, R. P. Muller and W. A. Goddard, The gas phase reaction of singlet dioxygen with water: A water-catalyzed mechanism, PNAS 99 (2002) 3376-3381. [Back]
  100. C. A. Angell, Glass transition dynamics in water and other tetrahedral liquids: ‘order–disorder’ transitions versus ‘normal’ glass transitions, J. Phys.: Condens. Matter 19 (2007) 205112. [Back, 2, 3] [Back to Top to top of page]

 

 

 

Home | Site Index | Site Map | Search | LSBU | Top

 

This page was established in 2006 and last updated by Martin Chaplin on 15 August, 2017


Creative Commons License
This work is licensed under a Creative Commons Attribution
-Noncommercial-No Derivative Works 2.0 UK: England & Wales License