Water site headerMasthead Island, Great Barrier Reef Print-me keygo to Water Visitor Book contributions
Go to my page Water Structure and Science

Water Structure and Science References 1301 - 1400

 

  1. F. A. Deeney and J. P. O’Leary, Zero point energy and the origin of the density maximum in water, Phys. Lett. A 372 (2007) 1551-1554. [Back]
  2. L. S. Romsted, Do amphiphile aggregate morphologies and interfacial compositions depend primarily on interfacial hydration and ion-specific interactions? The evidence from chemical trapping, Langmuir 23 (2007) 414-424. [Back]
  3. R. Rosenberg, Why is ice slippery? Physics Today, Dec. (2005) 50-55. [Back]
  4. R. C. Major, J. E. Houston, M. J. McGrath, J. I. Siepmann and X.-Y. Zhu, Viscous water meniscus under nanoconfinement, Phys. Rev. Lett. 96 (2006) 177803; M. P. Goertz, J. E. Houston and X.-Y. Zhu, Hydrophilicity and the viscosity of interfacial water, Langmuir 23 ( 2007) 5491-5497. T.-D. Li, J. Gao, R. Szoszkiewicz, U. Landman and E. Riedo, Structured and viscous water in subnanometer gaps, Phys. Rev. B 75 (2007) 115415. [Back, 2]
  5. C. L. Henry, C. N. Dalton, L. Scruton and V. S. J. Craig, Ion-specific coalescence of bubbles in mixed electrolyte solutions, J. Phys. Chem. C 111 ( 2007) 1015-1023. [Back]
  6. A. Priel, J. A. Tuszynski and N. J. Woolf, Transitions in microtubule C-termini conformations as a possible dendritic signaling phenomenon, Eur Biophys J 35 (2005) 40-52; J. A. Tuszynski, J. A. Brown, E. Crawford, E. J. Carpenter, M. L. A. Nip, J. M. Dixon and M. V. Satari, Molecular dynamics simulations of tubulin structure and calculations of electrostatic properties of microtubules, Mathematical Computer modelilng 41 (10) 1055-1070. [Back]
  7. A. Priel, A. J. Ramos, J. A. Tuszynski and H. F. Cantielloy, A biopolymer transistor: Electrical amplification by microtubules, Biophys. J. 90 (2006) 4639-4643. [Back]
  8. M. K. Petersen, S. S. Iyengar, T. J. F. Day and G. A. Voth, The hydrated proton at the water liquid/vapor interface, J. Phys. Chem. B 108 ( 2004) 14804-14806. [Back, 2]
  9. J. M. Hermida-Ramón, A. Öhrn and G. Karlström, Planar or nonplanar: What Is the structure of urea in aqueous solution? J. Phys. Chem. B 111 (2007) 11511-11515. [Back]
  10. S. M. Pershin, A. F. Bunkin, V. A. Lukyanchenko and R. R. Nigmatullin, Detection of the OH band fine structure in liquid water by means of new treatment procedure based on the statistics of the fractional moments, Laser Phys. Lett. 4 (2007) 809-813. [Back]
  11. P. Brunet, J. Eggers and R. D. Deegan, Vibration-induced climbing of drops, Phys. Rev. Lett. 99 (2007) 144501. [Back]
  12. G-H. Zuo, J. Hu and H-P. Fang, Protein folding under mediation of ordering watere: an off-lattice Go-like model study, Chin. Phys. Lett. 24 (2007) 2426-2429. [Back]
  13. S. A. Burikov, T. A. Dolenko, V. V. Fadeev and I. I. Vlasov, Revelation of ion hydration in Raman scattering spectral bands of water, Laser Phys. 17 ( 2007) 1-7. [Back]
  14. I. L. Cameron, N. J. Short and G. D. Fullerton, Verification of simple hydration/dehydration methods to characterize multiple water compartments on tendon type 1 collagen, Cell Biol. Int. 31 (2007) 531-539. [Back]
  15. V. T. Granik, B. R. Smith, S. C. Lee and M. Ferrari, Osmotic pressure for binary solutions of non-electrolytes, Biomed. Microdevices, 4 (2002) 309-321; A. Grattoni, M. Merlo and M. Ferrari, Osmotic pressure beyond concentration restrictions, J. Phys. Chem. B. 111 (2007) 11770-11775. [Back]
  16. J. C. Eriksson and U. Henriksson, Bridging-cluster model for hydrophobic attraction, Langmuir 23 (2007) 10026-10033. [Back, 2]
  17. A. A. Tikhomirov, V. S. Nedzvetskii, M. V. Lipka, G. V. Andrievskii and V. K. Klochkov, Chronic alcoholization-induced damage to astroglia and intensification of lipid peroxidation in the rat brain: Protector effect of hydrated form of fullerene С60, Neurophysiol. 39 (2007) 105-111. [Back]
  18. D. A. Schmidt and K. Miki, Structural correlations in liquid water: A new interpretation of IR spectroscopy, J. Phys. Chem. A 111 (2007) 10119-10122. [Back, 2]
  19. S. Magazù, F. Migliardo and M. T .F. Telling, Structural and dynamical properties of water in sugar mixtures, Food Chem. 106 (2008) 1460-1466. [Back]
  20. M. Choukrouna and O. Grasset, Thermodynamic model for water and high-pressure ices up to 2.2 GPa and down to the metastable domain, J. Chem. Phys. 127 (2007) 124506. [Back, 2, 3, 4, 5]
  21. A. V. Bandura and S. N. Lvova, The ionization constant of water over wide ranges of temperature and density, J. Phys. Chem. Ref. Data 35 (2006) 15-30. [Back]
  22. N. Ise, When, why, and how does like like like?—Electrostatic attraction between similarly charged species, Jpn. Acad., Ser. B 83 (2007) 192-198. [Back]
  23. S. N Ayrapetyan, Cell aqua medium as a primary target for the effect of electromagnetic fields, In Bioelectromagnetics Ed. S. N Ayrapetyan and M. S. Markov, (Springer, Dordrecht, 2006) pp. 31-63. [Back]
  24. A. S. Thomas and A. H. Elcock, Molecular dynamics simulations of hydrophobic associations in aqueous salt solutions indicate a connection between water hydrogen bonding and the Hofmeister effect, J. Am. Chem. Soc. 129 (2007) 14887-14898. [Back, 2]
  25. F. Mallamace, C. Branca, M. Broccio, C. Corsaro, C.-Y. Mou and S.-H. Chen, The anomalous behavior of the density of water in the range 30 K<T<373 K, PNAS 104 (2007) 18387-18391. [Back] [Back to Top to top of page]
  26. M. N. Rodnikova, A new approach to the mechanism of solvophobic interactions, J. Mol. Liq. 136 (2007) 211-213. [Back]
  27. S. Wei, X. Xiaobin, Z. Hong and X. Chuanxiang, Effects of dipole polarization of water
    molecules on ice formation under an electrostatic field, Cryobiology 56 (2008) 93-99. [Back]
  28. (a) B. Chai, J. Zheng, Q. Zhao and G. H. Pollack, Spectroscopic studies of solutes in aqueous solution, J. Phys. Chem. A 112 (2008) 2242-2247; (b) J.-M. Zheng and G. H. Pollack, Solute and potential distribution near hydrophilic surfaces, In Water and the cell, Ed. G. H. Pollack, I. L. Cameron and D. N. Wheatley (Springer, Dordrecht, 2006) pp. 165-174. [Back, 2, 3, 4, 5]
  29. A. N. Smirnov, V. B. Lapshin, A. V. Balyshev, I. M. Lebedev, V. V. Goncharuk and A. V. Syroyeshkin, Water structure; giant heterophase clusters of water, J. Water Chem. Technol. 27 (2005) 1-15. [Back]
  30. Y. L. A. Rezus and H. J. Bakker, Observation of immobilized water molecules around hydrophobic groups, Phys. Rev. Lett. 99 (2007) 148301. [Back]
  31. R. K. Adair, Vibrational resonances in biological systems at microwave frequencies, Biophys. J. 82 (2002) 1147-1152. [Back]
  32. V. P. Tychinskii, Dynamic phase microscopy: is a `dialogue' with the cell possible? Physics - Uspekhi 50 (2007) 513-528. [Back]
  33. C. Toral, M. E. Mendoza-Garrido, E. Azorın, E. Hernández-Gallegos, J. C. Gomora, D. M. Delgadillo, C. Solano-Agama, J. Camacho, Effect of extracellular matrix on adhesion, viability,actin cytoskeleton and K+ currents of cells expressing human ether à go-go channels, Life Sci. 81 (2007) 255-265. [Back]
  34. V. Krasnoholovets, Clusterization of water molecules as deduced from statistical mechanical approach, Central Eur. J. Phys. 2 (2004) 698-708. [Back]
  35. D. Swiatla-Wojcik, Evaluation of the criteria of hydrogen bonding in highly associated liquids, Chem. Phys. 342 (2007) 260-266. [Back]
  36. V. V. Novikov and E. E. Fesenko, Hydrolysis of some peptides and proteins in a weak combined (constant and low-frequency variable) magnetic field, Biophysics 46 (2001) 233-238. E. E. Fesenko, V. V. Novikov, and N. V. Bobkova, Decomposition of amyloid β-protein under the action of a weak magnetic field, Biophysics 48 (2003) 204-206. [Back]
  37. D. Le Bihan, The ‘wet mind’: water and functional neuroimaging, Phys. Med. Biol. 52 (2007) R57-R90. [Back]
  38. M. F. Chaplin, Water in biological recognition processes, Wiley Encyclopedia of Chemical Biology, Ed. T. P. Begley (John Wiley & Sons, 2008) 1-8. [Back]
  39. (a) F. Rodier, R. P. Bahadur, P. Chakrabarti and J. Janin, Hydration of protein-protein interfaces. Proteins 60 (2005) 36-45; (b) L. Lo Conte, C. Chothia and J. Janin, The atomic structure of protein-protein recognition sites. J. Mol. Biol. 285 (1999) 2177-2198. [Back]
  40. (a) Y. Lu, R. Wang, C-Y. Yang and S. Wang, Analysis of ligand-bound water molecules in high-resolution crystal structures of protein-ligand complexes. J. Chem. Inf. Model. 47 (2007) 668-675; (b) S.. Panigrahi and G. R. Desiraju, Strong and weak hydrogen bonds in the protein-ligand interface. Proteins 67 (2007) 128-141. [Back]
  41. C. K. Reddy, A. Das and B. Jayaram, Do water molecules mediate protein-DNA recognition? J. Mol. Biol. 314 (2001) 619-632. [Back]
  42. J. J. R. Stålgren, K. Boschkova, JC. Ericsson, C. W. Frank, W. Knoll, S. Satija and M. F. Toney, Enrichment of deuterium oxide at hydrophilic interfaces in aqueous solutions, Langmuir 23 (2007) 11943-11946. [Back]
  43. I. Brovchenko, A. Krukau, A. Oleinikova, A. Mazur, Water percolation governs polymorphic transition and conductivity of DNA, from computational biophysics to systems biology (CBSB07), Proceedings of the NIC Workshop 2007, Ed. U. H. E. Hansmann, J. Meinke, S. Mohanty and O. Zimmermann (John von Neumann Institute for Computing, Jülich, NIC Series, Vol. 36, 2007) pp. 195-197. [Back]
  44. A. Dey, F. E. Jenney, Jr., M. W. W. Adams, E. Babini, Y. Takahashi, K. Fukuyama, K. O. Hodgson, B. Hedman and E. I. Solomon, Solvent tuning of electrochemical potentials in the active sites of HiPIP versus ferredoxin, Science 318 (2007) 1464-1468. [Back]
  45. L. Zhang, L. Wang, Y.-T. Kao, W. Qiu, Y. Yang, O. Okobiah and D. Zhong, Mapping hydration dynamics around a protein surface, PNAS 104 (2007) 18461-18466. [Back]
  46. F. Manz, Hydration in children, J. Am. Colloid Nutr. 26 (2007) 562S-569S. [Back]
  47. (a) R. Zangi and J. B. F. N. Engberts, Physisorption of hydroxide ions from aqueous solution to a hydrophobic surface, J. Am. Chem. Soc. 127 (2005) 2272-2276. (b) D. Horinek and R. R. Netz, Specific ion adsorption at hydrophobic solid surfaces, Phys. Rev. Lett. 99 (2007) 226104. (c) V. Tandon, S. K. Bhagavatula, W. C. Nelson and B. J. Kirby, Zeta potential and electroosmotic mobility in microfluidic devices fabricated from hydrophobic polymers: 1. The origins of charge. Electrophoresis 29 (2008) 1092-1101. [Back, 2]
  48. (a) L. Vrbka and P. Jungwirth, Homogeneous freezing of water starts in the subsurface, J. Phys. Chem. B, 110 (2006) 18126-18129; (b) V. L. Kuz’min, Surface polarization in a highly polar liquid, Colloid J. 62 (2000) 152-158. (c) M. C. Goh, J. M. Hicks, K. Kemnitz, G. R. Pinto, K. Bhattacharyya, K. B. Eisenthal and T. F. Heinz, Absolute orientation of water molecules at the neat water surface, J. Phys. Chem. 92 (1988) 5074-5075. [Back]
  49. O. Markovitch and N. Agmon, The distribution of acceptor and donor hydrogen-bonds in bulk liquid water, Mol. Phys. 106 (2008) 485-495. [Back]
  50. M. Leetmaa, K. T. Wikfeldt, M. P. Ljungberg, M. Odelius, J. Swenson, A. Nilsson and L. G. M. Pettersson, Diffraction and IR/Raman data do not prove tetrahedral water, J. Chem. Phys. 129 (2008) 084502. L. G. M. Pettersson, Theoretical modelling of experiments on water, liquid phase and on surface; and A. Nilsson, Hydrogen bonding in water; the liquid phase and on surfaces. International Workshop on Molecular Structure and Dynamics of Interfacial Water, Shanghai (2007); [Back] [Back to Top to top of page]
  51. P. Jungwirth and D.J. Tobias, Specific ion effects at the air/water interface, Chem. Rev. 106 (2006) 1259-1281. [Back]
  52. P. Kumar and H. E. Stanley, Thermal conductivity minimum: a new water anomaly, J. Phys. Chem. B 115 (2011) 14269-14273; arXiv:cond-mat.soft 0708.4154v1 (2007). [Back, 2]
  53. T. S. Carlton, Using heat capacity and compressibility to choose among two-state models of liquid water, J. Phys. Chem. B 111 (2007) 13398-13403. [Back, 2, 3]
  54. (a) M. Vedamuthu, S. Singh and G. W. Robinson, Properties of liquid water: origin of the density anomalies, J. Phys. Chem. 98 (1994) 2222-2230; (b) M. Vedamuthu, S. Singh and G. W. Robinson, Accurate mixture-model densities for D2O, , J. Phys. Chem. 98 (1994) 8591-8593. (c) M. S. Vedamuthu, The anomalous properties of liquid water explained by a mixture model, PhD thesis (1996) Texas Tech. University. [Back, 2, 3]
  55. S. Chakraborty, S .K. Sinha and S. Bandyopadhyay, Low-frequency vibrational spectrum of water in the hydrationlayer of a protein: a molecular dynamics simulation study, J. Phys. Chem. B 111 (2007) 13626-13631. [Back]
  56. P. H. K. DeJong, J. E. Wilson, G. W. Neilson and A. D. Buckingham, Hydrophobic hydration of methane, Mol. Phys. 91 (1997) 99-103. [Back]
  57. A. Filipponi, D. T. Bowron, C. Lobban, and J. L. Finney, Structural determination of the hydrophobic hydration shell of Kr, Phys. Rev. Lett. 79 (1997) 1293-1296. [Back]
  58. R. Mancinelli, A. Botti, F. Bruni, M. A. Ricci and A. K. Soper, Hydration of sodium, potassium, and chloride ions in solution and the concept of structure maker/breaker, J. Phys. Chem. B 111 (2007) 13570-13577. [Back]
  59. P. Ball, Water as an active constituent in cell biology, Chem. Rev. 108 (2008) 74-108; P. Ball, Water is an active matrix of life for cell and molecular biology, PNAS Early Edition (2017) Article in press, doi: 10.1073/pnas.1703781114 . [Back]
  60. E. Theuwissen and R. P. Mensink, Water-soluble dietary fibers and cardiovascular disease, Physiol. Behav. 94 (2008) 285-292. [Back]
  61. E. C. Fuchs, J. Woisetschläger, K. Gatterer, E. Maier, R. Pecnik, G. Holler and H. Eisenkölbl, The floating water bridge, J. Phys. D: Appl. Phys. 40 (2007) 6112-6114. E. C. Fuchs, K. Gatterer, G. Holler and J. Woisetschläger, Dynamics of the floating water bridge, J. Phys. D: Appl. Phys. 41 (2008) 185502. T. Cramer, F. Zerbetto and R. García, Molecular mechanism of water bridge buildup: field-induced formation of nanoscale menisci, Langmuir 24 (2008) 6116-6120; A. Widom, Y.N. Srivastava, J. Swain, S. Sivasubramanian, Maxwell tension supports the water bridge, arXiv:0812.4845v1 [cond-mat.soft]; E. C. Fuchs, P. Baroni, B. Bitschnau and L. Noirez, Two-dimensional neutron scattering in a floating heavy water bridge, J. Phys. D: Appl. Phys. 43 (2010) 105502. E. C. Fuchs, Can a century old experiment reveal hidden properties of water? Water 2 (2010) 381-410. R. J. Johnson, Plasma-like behaviour of partially-ionized liquids Part I – The floating water bridge, Water 3, (2012) 132-145. L. B. Skinner, C. J. Benmore, B. Shyam, J. K. R. Weber and J. B. Parise, Structure of the floating water bridge and water in an electric field, PNAS 109 (2012) 16463-16468; E. C. Fuchs, A. D. Wexler, A. H. Paulitsch-Fuchs, L. L. F. Agostinho, D. Yntema and J. Woisetschläger, Review The Armstrong experiment revisited, Eur. Phys. J. Special Topics 223 (2013) 959-977. [Back, 2, 3]
  62. B. Poitevin, The continuing mystery of the Memory of Water, Homeopathy 97 (2008) 39-54; see also [1211b], F. Beauvais, ‘‘Memory of Water’’ without water: The logic of disputed experiments, Axiomathes 24 (2014) 275-290. [Back]
  63. P. W Gold, S. Novella, R. Roy, D. Marcus, I. Bell, N. Davidovitch and A. Saine, Homeopathy—quackery or a key to the future of medicine? Homeopathy 97 (2008) 28-33. [Back]
  64. P. Wiggins, Life depends upon two Kinds of water. PLoS ONE 1 (2008) e1406. [Back]
  65. S. Janaswamy and R. Chandrasekaran, Heterogeneity in iota-carrageenan molecular structure: insights for polymorph II-->III transition in the presence of calcium ions, Carbohydr. Res. 343 (2008) 364-373. [Back]
  66. D. Laage and J. T. Hynes, Reorientional dynamics of water molecules in anionic hydration shells, PNAS 104 (2007) 11167-11172. [Back]
  67. T. Suzuki, The hydration of glucose: the local configurations in sugar–water hydrogen bonds, Phys. Chem. Chem. Phys. 10 (2008) 96-105. [Back]
  68. S. Ebbinghaus, S. J. Kim, M. Heyden, X. Yu, U. Heugen, M. Gruebele, D. M. Leitner and M. Havenith, An extended dynamical hydration shell around proteins, PNAS 104 (2007) 20749-20752. [Back, 2]
  69. F. Hakem, A. Boussaid, H. Benchouk-Taleb and Mi. R. Bockstaller, Temperature, pressure, and isotope effects on the structure and properties of liquid water: A lattice approach, J. Chem. Phys. 127 (2007) 224106. [Back]
  70. L . Duncan, J. R. Jinschek and P. J . Vikesland, C60 Colloid formation in aqueous systems: Effects of preparation method on size, structure, and surface charge, Environ. Sci. Technol. 42 (2008) 173-178. [Back]
  71. C. F. Lopez, R. K. Darst and P. J. Rossky, Mechanistic elements of protein cold denaturation, J. Phys. Chem. B, 112 (2008) 5961-5967; C. L. Dias, T. Ala-Nissila, M. Karttunen, I. Vattulainen and M. Grant, Microscopic mechanism for cold denaturation, Phys. Rev. Lett. 100 (2008) 118101 arXiv:0704.2787v; C. L. Dias, T. Ala-Nissila, J. Wong-ekkabut, I. Vattulainen, M. Grant, M. Karttunen, The hydrophobic effect and its role in cold denaturation, Cryobiol. 60 (2010) 91-99. [Back]
  72. R. Parthasarathi, V. Subramanian and N. Sathyamurthy, Hydrogen bonding in protonated water clusters: An atoms-in-molecules perspective, J. Phys. Chem. A 111 (2007) 13287-13290. [Back]
  73. (a) G. Franzese and H E. Stanley, The Widom line of supercooled water, J. Phys.: Condens. Matter 19 (2007) 205126. (b) P. Kumar, G. Franzese and H E. Stanley, Dynamics and thermodynamics of water, J. Phys.: Condens. Matter 20 (2008) 244114. [Back]
  74. F. Li, Q. Cui, Z. He, T. Cui, J. Zhang, Q. Zhou and G. Zou, High pressure-temperature Brillouin study of liquid water: Evidence of the structural transition from low density water to high density water, J. Chem. Phys. 123 (2005) 174511. [Back]
  75. M. Li, J. Liu, X. Ran, M. Fang, J. Shi, H. Qin, J.-M. Goh and J. Song, Resurrecting abandonedproteins with pure water: CD and NMR studies of protein fragments solubilized in salt-free water, Biophys. J. 91 (2006) 4201-4209. [Back] [Back to Top to top of page]
  76. Yu. A. Mikheev, L. N. Guseva, E. Ya. Davydov and Yu. A. Ershov, The hydration of hydrophobic substances, Russ. J. Phys. Chem. A 81 (2007) 1897-1913. [Back]
  77. P. Needham, Is water a mixure? Bridging the distinction between physical and chemical properties, Studies in History and Philosophy of Science 39 (2008) 66-77. [Back]
  78. G. A. Morris, T. R. Patel, D. R. Picout, S. B. Ross-Murphy, A. Ortega, J. G. de la Torre and S. E. Harding, Global hydrodynamic analysis of the molecular flexibility of galactomannans, Carbohydr. Polymers 72 (2008) 356-360. [Back, 2]
  79. Y. Fang, S. Al-Assaf, G. O. Phillips, K. Nishinari, T. Funami, P. A. Williams and L. Li, Multiple steps and critical behaviors of the binding of calcium to alginate, J Phys Chem B. 111 (2007) 2456-2462. [Back]
  80. Y. Fang, S. Al-Assaf, G. O. Phillips, K. Nishinari, T. Funami and P. A. Williams, Binding behavior of calcium to polyuronates: Comparison of pectin with alginate. Carbohydr. Polymers 72 (2008) 334-341. [Back]
  81. T. Johnson and H.Boon, Where does homeopathy fit in pharmacy practice?. Am. J. Pharmaceutical Educ. 71 (2007) 7. [Back]
  82. P. Fisher, Homeopathy and The Lancet, Evidence-based Complementary and Alternative Medicine, 3 (2006) 145-147. [Back]
  83. W. L. Mao, H-k. Mao, Y. Meng, P. J. Eng, M. Y. Hu, P. Chow, Y. Q. Cai, J. Shu, and R. Hemley, X-ray-induced dissociation of H2O and formation of an O2-H2 alloy at high pressure, Science 314 (2006) 636-638. [Back]
  84. V. I. Gaiduk, O. F. Nielsen and D. S. F. Crothers, Molecular theory of low-frequency Taman spectrum of water in the translational-band region, J. Mol. Liquids 137 (2008) 92-103. [Back]
  85. R. Feistel and W. Wagner, A new equation of state for H2O ice Ih, J. Phys. Chem. Ref. Data 35 (2006) 1021-1047. [Back]
  86. M. E. Zamberlan da Silva, R. G. Santana, M. Guilhermetti, I. C. Filho, E. H. Endo, T. Ueda-Nakamura, C. V. Nakamura and B. P. Dias Filho, Comparison of the bacteriological quality of tap water and bottled mineral water, Int. J. Hyg. Environ. Health 211 (2008) 504-509. [Back]
  87. E. Sternemalm, A. Höije and P. Gatenholm, Effect of arabinose substitution on the material properties of arabinoxylan films, Carbohydr. Res. 343 (2008) 753-757. [Back]
  88. E. B. Mpemba and D. G. Osborne, Cool?, Phys. Educ. 4 (1969) 172-175; E. B. Mpemba and D. G. Osborne, Cool? Phys. Educ. 14 (1979) 410-412. [Back]
  89. D. J. Tobias and J. C. Hemminger, Getting specific about specific ion effects, Science 319 (2008) 1197-1198. R. Zangi, Can salting-in/salting-out ions be classified as chaotropes/kosmotropes? J. Phys. Chem. B 114 (2010) 643-650. [Back]
  90. G. S. Kell, The freezing of hot and cold water, Am. J. Phys. 37 (1969) 564-565. [Back]
  91. A. Vysniauskas and P. R. Bishnoi, A kinetic study of methane hydrate formation, Chem. Eng. Sci. 38 (1983) 1061-1072. [Back, 2]
  92. G. E. Ewing, M. Foster, W. Cantrell and V. Sadtchenko, Thin film water on insulator surfaces, in Water in Confining Geometries, eds V. Buch and J. P. Devlin, (Springer-Verlag, Berlin, 2003) pp. 179-211. The original figure was from David Weis. [Back]
  93. C. Tanford, How protein chemists learned about the hydrophobic factor, Protein Sci. 6 (1997) 1358-1366. [Back]
  94. B. Gu, F. S. Zhang, Z. P. Wang and H. Y. Zhou, Solvent-induced DNA conformational transition, Phys. Rev. Lett. 100 (2008) 088104. [Back]
  95. S. Pittendrigh, P. C. Caldarola and E. S. Cosbey, Effect of heavy water on temperature-dependent and temperature-compensated aspects of the circadian system of drosophila pseudoobscura, PNAS 70 (1973) 2037-2041. [Back]
  96. (a) S. Vaitheeswaran, H. Yin, J. C. Rasaiah and G. Hummer, Water clusters in non-polar cavities, PNAS 101 (2004) 17002-17005. (b) M. Rana and A. Chandra, Filled and empty states of carbon nanotubes in water: Dependence on nanotube diameter wall thickness and dispersion interactions, J. Chem. Sci 119 (2007) 367-376. [Back]
  97. S. Vaitheeswaran, J. C. Rasaiah and G. Hummer, Electric field and temperature effects on water in the narrow non-polar pores of carbon nanotubes, J. Chem. Phys. 121 (2004) 7955-7965. [Back]
  98. I. Hanasaki, A. Nakamura, T. Yonebayashi and S. Kawano, Structure and stability of water chain in a carbon nanotube. J. Phys Condens. Matter 20 (2008) 015213. [Back]
  99. J.-G. Fan and Y.-P. Zhao, Freezing a water droplet on an aligned Si nanorod array substrate, Nanotechnol. 19 (2008) 155707. [Back]
  100. D. Takaiwa, I. Hatano, K. Koga and H. Tanaka, Phase diagram of water in carbon nanotubes, PNAS 105 (2008) 39-43. [Back] [Back to Top to top of page]

 

 

 

Home | Site Index | Site Map | Search | LSBU | Top

 

This page was established in 2007 and last updated by Martin Chaplin on 15 August, 2017


Creative Commons License
This work is licensed under a Creative Commons Attribution
-Noncommercial-No Derivative Works 2.0 UK: England & Wales License