Water site headerMasthead Island, Great Barrier Reef Print-me keygo to Water Visitor Book contributions
Go to my page Water Structure and Science

Water Structure and Science, References 1301 - 1400

 

  1. F. A. Deeney and J. P. O’Leary, Zero point energy and the origin of the density maximum in water, Physics Letters, A 372 (2007) 1551-1554. [Back]
  2. L. S. Romsted, Do amphiphile aggregate morphologies and interfacial compositions depend primarily on interfacial hydration and ion-specific interactions? The evidence from chemical trapping, Langmuir, 23 (2007) 414-424. [Back]
  3. R. Rosenberg, Why is ice slippery? Physics Today, Dec. (2005) 50-55. [Back]
  4. R. C. Major, J. E. Houston, M. J. McGrath, J. I. Siepmann and X.-Y. Zhu, Viscous water meniscus under nanoconfinement, Physical Review Letters 96 (2006) 177803; M. P. Goertz, J. E. Houston and X.-Y. Zhu, Hydrophilicity and the viscosity of interfacial water, Langmuir, 23 ( 2007) 5491-5497. T.-D. Li, J. Gao, R. Szoszkiewicz, U. Landman and E. Riedo, Structured and viscous water in subnanometer gaps, Physical Review, B 75 (2007) 115415. [Back, 2]
  5. C. L. Henry, C. N. Dalton, L. Scruton and V. S. J. Craig, Ion-specific coalescence of bubbles in mixed electrolyte solutions, Journal of Physical Chemistry C 111 ( 2007) 1015-1023. [Back]
  6. A. Priel, J. A. Tuszynski and N. J. Woolf, Transitions in microtubule C-termini conformations as a possible dendritic signaling phenomenon, Eur Biophys J 35 (2005) 40-52; J. A. Tuszynski, J. A. Brown, E. Crawford, E. J. Carpenter, M. L. A. Nip, J. M. Dixon and M. V. Satari, Molecular dynamics simulations of tubulin structure and calculations of electrostatic properties of microtubules, Mathematical Computer modelilng 41 (10) 1055-1070. [Back]
  7. A. Priel, A. J. Ramos, J. A. Tuszynski and H. F. Cantielloy, A biopolymer transistor: Electrical amplification by microtubules, Biophysical Journal, 90 (2006) 4639-4643. [Back]
  8. M. K. Petersen, S. S. Iyengar, T. J. F. Day and G. A. Voth, The hydrated proton at the water liquid/vapor interface, Journal of Physical Chemistry B 108 ( 2004) 14804-14806. [Back, 2]
  9. J. M. Hermida-Ramón, A. Öhrn and G. Karlström, Planar or nonplanar: What Is the structure of urea in aqueous solution? Journal of Physical Chemistry B 111 (2007) 11511-11515. [Back]
  10. S. M. Pershin, A. F. Bunkin, V. A. Lukyanchenko and R. R. Nigmatullin, Detection of the OH band fine structure in liquid water by means of new treatment procedure based on the statistics of the fractional moments, Laser Physics Letters, 4 (2007) 809-813. [Back]
  11. P. Brunet, J. Eggers and R. D. Deegan, Vibration-induced climbing of drops, Physical Review Letters 99 (2007) 144501. [Back]
  12. G-H. Zuo, J. Hu and H-P. Fang, Protein folding under mediation of ordering watere: an off-lattice Go-like model study, Chin. Physics Letters, 24 (2007) 2426-2429. [Back]
  13. S. A. Burikov, T. A. Dolenko, V. V. Fadeev and I. I. Vlasov, Revelation of ion hydration in Raman scattering spectral bands of water, Laser Phys. 17 ( 2007) 1-7. [Back]
  14. I. L. Cameron, N. J. Short and G. D. Fullerton, Verification of simple hydration/dehydration methods to characterize multiple water compartments on tendon type 1 collagen, Cell Biology International, 31 (2007) 531-539. [Back]
  15. V. T. Granik, B. R. Smith, S. C. Lee and M. Ferrari, Osmotic pressure for binary solutions of non-electrolytes, Biomed. Microdevices, 4 (2002) 309-321; A. Grattoni, M. Merlo and M. Ferrari, Osmotic pressure beyond concentration restrictions, Journal of Physical Chemistry B. 111 (2007) 11770-11775. [Back]
  16. J. C. Eriksson and U. Henriksson, Bridging-cluster model for hydrophobic attraction, Langmuir, 23 (2007) 10026-10033. [Back, 2]
  17. A. A. Tikhomirov, V. S. Nedzvetskii, M. V. Lipka, G. V. Andrievskii and V. K. Klochkov, Chronic alcoholization-induced damage to astroglia and intensification of lipid peroxidation in the rat brain: Protector effect of hydrated form of fullerene С60, Neurophysiol. 39 (2007) 105-111. [Back]
  18. D. A. Schmidt and K. Miki, Structural correlations in liquid water: A new interpretation of IR spectroscopy, Journal of Physical Chemistry A 111 (2007) 10119-10122. [Back, 2]
  19. S. Magazù, F. Migliardo and M. T .F. Telling, Structural and dynamical properties of water in sugar mixtures, Food Chemistry, 106 (2008) 1460-1466. [Back]
  20. M. Choukrouna and O. Grasset, Thermodynamic model for water and high-pressure ices up to 2.2 GPa and down to the metastable domain, Journal of Chemical Physics,127 (2007) 124506. [Back, 2, 3, 4, 5]
  21. A. V. Bandura and S. N. Lvova, The ionization constant of water over wide ranges of temperature and density, Journal of Physical Chemistry Reference Data, 35 (2006) 15-30. [Back]
  22. N. Ise, When, why, and how does like like like?—Electrostatic attraction between similarly charged species, Jpn. Acad., Ser. B 83 (2007) 192-198. [Back]
  23. S. N Ayrapetyan, Cell aqua medium as a primary target for the effect of electromagnetic fields, In Bioelectromagnetics Ed. S. N Ayrapetyan and M. S. Markov, (Springer, Dordrecht, 2006) pp. 31-63. [Back]
  24. A. S. Thomas and A. H. Elcock, Molecular dynamics simulations of hydrophobic associations in aqueous salt solutions indicate a connection between water hydrogen bonding and the Hofmeister effect, Journal of the American Chemical Society, 129 (2007) 14887-14898. [Back, 2]
  25. F. Mallamace, C. Branca, M. Broccio, C. Corsaro, C.-Y. Mou and S.-H. Chen, The anomalous behavior of the density of water in the range 30 K<T<373 K, Proceedings of the National Academy of Sciences, 104 (2007) 18387-18391. [Back] [Back to Top to top of page]
  26. M. N. Rodnikova, A new approach to the mechanism of solvophobic interactions, Journal of Molecular Liquids, 136 (2007) 211-213. [Back]
  27. S. Wei, X. Xiaobin, Z. Hong and X. Chuanxiang, Effects of dipole polarization of water
    molecules on ice formation under an electrostatic field, Cryobiology 56 (2008) 93-99. [Back]
  28. (a) B. Chai, J. Zheng, Q. Zhao and G. H. Pollack, Spectroscopic studies of solutes in aqueous solution, Journal of Physical Chemistry A 112 (2008) 2242-2247; (b) J.-M. Zheng and G. H. Pollack, Solute and potential distribution near hydrophilic surfaces, In Water and the cell, Ed. G. H. Pollack, I. L. Cameron and D. N. Wheatley (Springer, Dordrecht, 2006) pp. 165-174. [Back, 2, 3, 4, 5]
  29. A. N. Smirnov, V. B. Lapshin, A. V. Balyshev, I. M. Lebedev, V. V. Goncharuk and A. V. Syroyeshkin, Water structure; giant heterophase clusters of water, J. Water Chem. Technol. 27 (2005) 1-15. [Back]
  30. Y. L. A. Rezus and H. J. Bakker, Observation of immobilized water molecules around hydrophobic groups, Physical Review Letters 99 (2007) 148301. [Back]
  31. R. K. Adair, Vibrational resonances in biological systems at microwave frequencies, Biophysical Journal, 82 (2002) 1147-1152. [Back]
  32. V. P. Tychinskii, Dynamic phase microscopy: is a `dialogue' with the cell possible? Physics - Uspekhi 50 (2007) 513-528. [Back]
  33. C. Toral, M. E. Mendoza-Garrido, E. Azorın, E. Hernández-Gallegos, J. C. Gomora, D. M. Delgadillo, C. Solano-Agama, J. Camacho, Effect of extracellular matrix on adhesion, viability,actin cytoskeleton and K+ currents of cells expressing human ether à go-go channels, Life Science 81 (2007) 255-265. [Back]
  34. V. Krasnoholovets, Clusterization of water molecules as deduced from statistical mechanical approach, Central Eur. Journal of Phys. 2 (2004) 698-708. [Back]
  35. D. Swiatla-Wojcik, Evaluation of the criteria of hydrogen bonding in highly associated liquids, Chemical Physics, 342 (2007) 260-266. [Back]
  36. V. V. Novikov and E. E. Fesenko, Hydrolysis of some peptides and proteins in a weak combined (constant and low-frequency variable) magnetic field, Biophysics 46 (2001) 233-238. E. E. Fesenko, V. V. Novikov, and N. V. Bobkova, Decomposition of amyloid β-protein under the action of a weak magnetic field, Biophysics 48 (2003) 204-206. [Back]
  37. D. Le Bihan, The ‘wet mind’: water and functional neuroimaging, Phys. Med. Biol. 52 (2007) R57-R90. [Back]
  38. M. F. Chaplin, Water in biological recognition processes, Wiley Encyclopedia of Chemical Biology, Ed. T. P. Begley (John Wiley & Sons, 2008) 1-8. [Back]
  39. (a) F. Rodier, R. P. Bahadur, P. Chakrabarti and J. Janin, Hydration of protein-protein interfaces. Proteins 60 (2005) 36-45; (b) L. Lo Conte, C. Chothia and J. Janin, The atomic structure of protein-protein recognition sites. Journal of Molecular Biology, 285 (1999) 2177-2198. [Back]
  40. (a) Y. Lu, R. Wang, C-Y. Yang and S. Wang, Analysis of ligand-bound water molecules in high-resolution crystal structures of protein-ligand complexes. Journal of Chem. Inf. Model. 47 (2007) 668-675; (b) S.. Panigrahi and G. R. Desiraju, Strong and weak hydrogen bonds in the protein-ligand interface. Proteins 67 (2007) 128-141. [Back]
  41. C. K. Reddy, A. Das and B. Jayaram, Do water molecules mediate protein-DNA recognition? Journal of Molecular Biology, 314 (2001) 619-632. [Back]
  42. J. J. R. Stålgren, K. Boschkova, JC. Ericsson, C. W. Frank, W. Knoll, S. Satija and M. F. Toney, Enrichment of deuterium oxide at hydrophilic interfaces in aqueous solutions, Langmuir, 23 (2007) 11943-11946. [Back]
  43. I. Brovchenko, A. Krukau, A. Oleinikova, A. Mazur, Water percolation governs polymorphic transition and conductivity of DNA, from computational biophysics to systems biology (CBSB07), Proceedings of the NIC Workshop 2007, Ed. U. H. E. Hansmann, J. Meinke, S. Mohanty and O. Zimmermann (John von Neumann Institute for Computing, Jülich, NIC Series, Vol. 36, 2007) pp. 195-197. [Back]
  44. A. Dey, F. E. Jenney, Jr., M. W. W. Adams, E. Babini, Y. Takahashi, K. Fukuyama, K. O. Hodgson, B. Hedman and E. I. Solomon, Solvent tuning of electrochemical potentials in the active sites of HiPIP versus ferredoxin, Science, 318 (2007) 1464-1468. [Back]
  45. L. Zhang, L. Wang, Y.-T. Kao, W. Qiu, Y. Yang, O. Okobiah and D. Zhong, Mapping hydration dynamics around a protein surface, Proceedings of the National Academy of Sciences, 104 (2007) 18461-18466. [Back]
  46. F. Manz, Hydration in children, J. American Colloid Nutr. 26 (2007) 562S-569S. [Back]
  47. (a) R. Zangi and J. B. F. N. Engberts, Physisorption of hydroxide ions from aqueous solution to a hydrophobic surface, Journal of the American Chemical Society, 127 (2005) 2272-2276. (b) D. Horinek and R. R. Netz, Specific ion adsorption at hydrophobic solid surfaces, Physical Review Letters 99 (2007) 226104. (c) V. Tandon, S. K. Bhagavatula, W. C. Nelson and B. J. Kirby, Zeta potential and electroosmotic mobility in microfluidic devices fabricated from hydrophobic polymers: 1. The origins of charge. Electrophoresis 29 (2008) 1092-1101. [Back, 2]
  48. (a) L. Vrbka and P. Jungwirth, Homogeneous freezing of water starts in the subsurface, Journal of Physical Chemistry B, 110 (2006) 18126-18129; (b) V. L. Kuz’min, Surface polarization in a highly polar liquid, Colloid J. 62 (2000) 152-158. (c) M. C. Goh, J. M. Hicks, K. Kemnitz, G. R. Pinto, K. Bhattacharyya, K. B. Eisenthal and T. F. Heinz, Absolute orientation of water molecules at the neat water surface, Journal of Physical Chemistry 92 (1988) 5074-5075. [Back]
  49. O. Markovitch and N. Agmon, The distribution of acceptor and donor hydrogen-bonds in bulk liquid water, Molecular Physics, 106 (2008) 485-495. [Back]
  50. M. Leetmaa, K. T. Wikfeldt, M. P. Ljungberg, M. Odelius, J. Swenson, A. Nilsson and L. G. M. Pettersson, Diffraction and IR/Raman data do not prove tetrahedral water, Journal of Chemical Physics,129 (2008) 084502. L. G. M. Pettersson, Theoretical modelling of experiments on water, liquid phase and on surface; and A. Nilsson, Hydrogen bonding in water; the liquid phase and on surfaces. International Workshop on Molecular Structure and Dynamics of Interfacial Water, Shanghai (2007); [Back] [Back to Top to top of page]
  51. P. Jungwirth and D.J. Tobias, Specific ion effects at the air/water interface, Chemical Reviews, 106 (2006) 1259-1281. [Back]
  52. P. Kumar and H. E. Stanley, Thermal conductivity minimum: a new water anomaly, Journal of Physical Chemistry B 115 (2011) 14269-14273; arXiv:cond-mat.soft 0708.4154v1 (2007). [Back, 2]
  53. T. S. Carlton, Using heat capacity and compressibility to choose among two-state models of liquid water, Journal of Phys. Chem. B 111 (2007) 13398-13403. [Back, 2, 3]
  54. (a) M. Vedamuthu, S. Singh and G. W. Robinson, Properties of liquid water: origin of the density anomalies, Journal of Physical Chemistry 98 (1994) 2222-2230; (b) M. Vedamuthu, S. Singh and G. W. Robinson, Accurate mixture-model densities for D2O, Journal of Physical Chemistry 98 (1994) 8591-8593. (c) M. S. Vedamuthu, The anomalous properties of liquid water explained by a mixture model, PhD thesis (1996) Texas Tech. University; G. Wada, A simplified model for the structure of water, Bulletin of the Chemical Society of Japan, 34 (1961) 955-962. [Back, 2, 3]
  55. S. Chakraborty, S .K. Sinha and S. Bandyopadhyay, Low-frequency vibrational spectrum of water in the hydrationlayer of a protein: a molecular dynamics simulation study, Journal of Physical Chemistry B 111 (2007) 13626-13631. [Back]
  56. P. H. K. DeJong, J. E. Wilson, G. W. Neilson and A. D. Buckingham, Hydrophobic hydration of methane, Molecular Physics, 91 (1997) 99-103. [Back]
  57. A. Filipponi, D. T. Bowron, C. Lobban, and J. L. Finney, Structural determination of the hydrophobic hydration shell of Kr, Physical Review Letters 79 (1997) 1293-1296. [Back]
  58. R. Mancinelli, A. Botti, F. Bruni, M. A. Ricci and A. K. Soper, Hydration of sodium, potassium, and chloride ions in solution and the concept of structure maker/breaker, Journal of Physical Chemistry B 111 (2007) 13570-13577. [Back]
  59. P. Ball, Water as an active constituent in cell biology, Chemical Reviews, 108 (2008) 74-108; P. Ball, Water is an active matrix of life for cell and molecular biology, Proceedings of the National Academy of Sciences, Early Edition (2017) Article in press, doi: 10.1073/pnas.1703781114 . [Back]
  60. E. Theuwissen and R. P. Mensink, Water-soluble dietary fibers and cardiovascular disease, Physiol. Behav. 94 (2008) 285-292. [Back]
  61. E. C. Fuchs, J. Woisetschläger, K. Gatterer, E. Maier, R. Pecnik, G. Holler and H. Eisenkölbl, The floating water bridge, Journal of Phys. D: Appl. Phys. 40 (2007) 6112-6114. E. C. Fuchs, K. Gatterer, G. Holler and J. Woisetschläger, Dynamics of the floating water bridge, Journal of Phys. D: Appl. Phys. 41 (2008) 185502. T. Cramer, F. Zerbetto and R. García, Molecular mechanism of water bridge buildup: field-induced formation of nanoscale menisci, Langmuir, 24 (2008) 6116-6120; A. Widom, Y.N. Srivastava, J. Swain, S. Sivasubramanian, Maxwell tension supports the water bridge, arXiv:0812.4845v1 [cond-mat.soft]; E. C. Fuchs, P. Baroni, B. Bitschnau and L. Noirez, Two-dimensional neutron scattering in a floating heavy water bridge, Journal of Phys. D: Appl. Phys. 43 (2010) 105502. E. C. Fuchs, Can a century old experiment reveal hidden properties of water? Water 2 (2010) 381-410. R. J. Johnson, Plasma-like behaviour of partially-ionized liquids Part I – The floating water bridge, Water 3, (2012) 132-145. L. B. Skinner, C. J. Benmore, B. Shyam, J. K. R. Weber and J. B. Parise, Structure of the floating water bridge and water in an electric field, Proceedings of the National Academy of Sciences, 109 (2012) 16463-16468; E. C. Fuchs, A. D. Wexler, A. H. Paulitsch-Fuchs, L. L. F. Agostinho, D. Yntema and J. Woisetschläger, Review The Armstrong experiment revisited, Eur. Phys. J. Special Topics 223 (2013) 959-977. [Back, 2, 3]
  62. B. Poitevin, The continuing mystery of the Memory of Water, Homeopathy, 97 (2008) 39-54; see also [1211b], F. Beauvais, ‘‘Memory of Water’’ without water: The logic of disputed experiments, Axiomathes 24 (2014) 275-290. [Back]
  63. P. W Gold, S. Novella, R. Roy, D. Marcus, I. Bell, N. Davidovitch and A. Saine, Homeopathy—quackery or a key to the future of medicine? Homeopathy, 97 (2008) 28-33. [Back]
  64. P. Wiggins, Life depends upon two Kinds of water. PLoS ONE 1 (2008) e1406. [Back]
  65. S. Janaswamy and R. Chandrasekaran, Heterogeneity in iota-carrageenan molecular structure: insights for polymorph II-->III transition in the presence of calcium ions, Carbohydate Research, 343 (2008) 364-373. [Back]
  66. D. Laage and J. T. Hynes, Reorientional dynamics of water molecules in anionic hydration shells, Proceedings of the National Academy of Sciences, 104 (2007) 11167-11172. [Back]
  67. T. Suzuki, The hydration of glucose: the local configurations in sugar–water hydrogen bonds, Physical Chemistry Chemical Physics, 10 (2008) 96-105. [Back]
  68. S. Ebbinghaus, S. J. Kim, M. Heyden, X. Yu, U. Heugen, M. Gruebele, D. M. Leitner and M. Havenith, An extended dynamical hydration shell around proteins, Proceedings of the National Academy of Sciences, 104 (2007) 20749-20752. [Back, 2]
  69. F. Hakem, A. Boussaid, H. Benchouk-Taleb and Mi. R. Bockstaller, Temperature, pressure, and isotope effects on the structure and properties of liquid water: A lattice approach, Journal of Chemical Physics,127 (2007) 224106. [Back]
  70. L . Duncan, J. R. Jinschek and P. J . Vikesland, C60 Colloid formation in aqueous systems: Effects of preparation method on size, structure, and surface charge, Environ. Science Technol. 42 (2008) 173-178. [Back]
  71. C. F. Lopez, R. K. Darst and P. J. Rossky, Mechanistic elements of protein cold denaturation, Journal of Physical Chemistry B, 112 (2008) 5961-5967; C. L. Dias, T. Ala-Nissila, M. Karttunen, I. Vattulainen and M. Grant, Microscopic mechanism for cold denaturation, Physical Review Letters 100 (2008) 118101 arXiv:0704.2787v; C. L. Dias, T. Ala-Nissila, J. Wong-ekkabut, I. Vattulainen, M. Grant, M. Karttunen, The hydrophobic effect and its role in cold denaturation, Cryobiol. 60 (2010) 91-99. [Back]
  72. R. Parthasarathi, V. Subramanian and N. Sathyamurthy, Hydrogen bonding in protonated water clusters: An atoms-in-molecules perspective, Journal of Physical Chemistry A 111 (2007) 13287-13290. [Back]
  73. (a) G. Franzese and H E. Stanley, The Widom line of supercooled water, Journal of Physics: Condensed Matter, 19 (2007) 205126. (b) P. Kumar, G. Franzese and H E. Stanley, Dynamics and thermodynamics of water, Journal of Physics: Condensed Matter, 20 (2008) 244114. [Back]
  74. F. Li, Q. Cui, Z. He, T. Cui, J. Zhang, Q. Zhou and G. Zou, High pressure-temperature Brillouin study of liquid water: Evidence of the structural transition from low density water to high density water, Journal of Chemical Physics,123 (2005) 174511. [Back]
  75. M. Li, J. Liu, X. Ran, M. Fang, J. Shi, H. Qin, J.-M. Goh and J. Song, Resurrecting abandonedproteins with pure water: CD and NMR studies of protein fragments solubilized in salt-free water, Biophysical Journal, 91 (2006) 4201-4209. [Back] [Back to Top to top of page]
  76. Yu. A. Mikheev, L. N. Guseva, E. Ya. Davydov and Yu. A. Ershov, The hydration of hydrophobic substances, Russ. Journal of Physical Chemistry A 81 (2007) 1897-1913. [Back]
  77. P. Needham, Is water a mixure? Bridging the distinction between physical and chemical properties, Studies in History and Philosophy of Science, 39 (2008) 66-77. [Back]
  78. G. A. Morris, T. R. Patel, D. R. Picout, S. B. Ross-Murphy, A. Ortega, J. G. de la Torre and S. E. Harding, Global hydrodynamic analysis of the molecular flexibility of galactomannans, Carbohydrate Polymers 72 (2008) 356-360. [Back, 2]
  79. Y. Fang, S. Al-Assaf, G. O. Phillips, K. Nishinari, T. Funami, P. A. Williams and L. Li, Multiple steps and critical behaviors of the binding of calcium to alginate, J Phys Chem B. 111 (2007) 2456-2462. [Back]
  80. Y. Fang, S. Al-Assaf, G. O. Phillips, K. Nishinari, T. Funami and P. A. Williams, Binding behavior of calcium to polyuronates: Comparison of pectin with alginate. Carbohydrate Polymers 72 (2008) 334-341. [Back]
  81. T. Johnson and H.Boon, Where does homeopathy fit in pharmacy practice?. American J. Pharmaceutical Educ. 71 (2007) 7. [Back]
  82. P. Fisher, Homeopathy and The Lancet, Evidence-based Complementary and Alternative Medicine, 3 (2006) 145-147. [Back]
  83. W. L. Mao, H-k. Mao, Y. Meng, P. J. Eng, M. Y. Hu, P. Chow, Y. Q. Cai, J. Shu, and R. Hemley, X-ray-induced dissociation of H2O and formation of an O2-H2 alloy at high pressure, Science, 314 (2006) 636-638. [Back]
  84. V. I. Gaiduk, O. F. Nielsen and D. S. F. Crothers, Molecular theory of low-frequency Taman spectrum of water in the translational-band region, Journal of Molecular Liquids, 137 (2008) 92-103. [Back]
  85. R. Feistel and W. Wagner, A new equation of state for H2O ice Ih, Journal of Physical Chemistry Reference Data, 35 (2006) 1021-1047. [Back]
  86. M. E. Zamberlan da Silva, R. G. Santana, M. Guilhermetti, I. C. Filho, E. H. Endo, T. Ueda-Nakamura, C. V. Nakamura and B. P. Dias Filho, Comparison of the bacteriological quality of tap water and bottled mineral water, International Journal of Hyg. Environ. Health 211 (2008) 504-509. [Back]
  87. E. Sternemalm, A. Höije and P. Gatenholm, Effect of arabinose substitution on the material properties of arabinoxylan films, Carbohydate Research, 343 (2008) 753-757. [Back]
  88. E. B. Mpemba and D. G. Osborne, Cool?, Phys. Educ. 4 (1969) 172-175; E. B. Mpemba and D. G. Osborne, Cool? Phys. Educ. 14 (1979) 410-412. [Back]
  89. D. J. Tobias and J. C. Hemminger, Getting specific about specific ion effects, Science, 319 (2008) 1197-1198. R. Zangi, Can salting-in/salting-out ions be classified as chaotropes/kosmotropes? Journal of Physical Chemistry B 114 (2010) 643-650. [Back]
  90. G. S. Kell, The freezing of hot and cold water, American Journal of Phys. 37 (1969) 564-565. [Back]
  91. A. Vysniauskas and P. R. Bishnoi, A kinetic study of methane hydrate formation, Chemical Engineering Science, 38 (1983) 1061-1072. [Back, 2]
  92. G. E. Ewing, M. Foster, W. Cantrell and V. Sadtchenko, Thin film water on insulator surfaces, in Water in Confining Geometries, eds V. Buch and J. P. Devlin, (Springer-Verlag, Berlin, 2003) pp. 179-211. The original figure was from David Weis. [Back]
  93. C. Tanford, How protein chemists learned about the hydrophobic factor, Protein Science 6 (1997) 1358-1366. [Back]
  94. B. Gu, F. S. Zhang, Z. P. Wang and H. Y. Zhou, Solvent-induced DNA conformational transition, Physical Review Letters 100 (2008) 088104. [Back]
  95. S. Pittendrigh, P. C. Caldarola and E. S. Cosbey, Effect of heavy water on temperature-dependent and temperature-compensated aspects of the circadian system of drosophila pseudoobscura, Proceedings of the National Academy of Sciences, 70 (1973) 2037-2041. [Back]
  96. (a) S. Vaitheeswaran, H. Yin, J. C. Rasaiah and G. Hummer, Water clusters in non-polar cavities, Proceedings of the National Academy of Sciences, 101 (2004) 17002-17005. (b) M. Rana and A. Chandra, Filled and empty states of carbon nanotubes in water: Dependence on nanotube diameter wall thickness and dispersion interactions, J. Chem. Sci 119 (2007) 367-376. [Back]
  97. S. Vaitheeswaran, J. C. Rasaiah and G. Hummer, Electric field and temperature effects on water in the narrow non-polar pores of carbon nanotubes, Journal of Chem. Phys. 121 (2004) 7955-7965. [Back]
  98. I. Hanasaki, A. Nakamura, T. Yonebayashi and S. Kawano, Structure and stability of water chain in a carbon nanotube. Journal of Phys Condens. Matter 20 (2008) 015213. [Back]
  99. J.-G. Fan and Y.-P. Zhao, Freezing a water droplet on an aligned Si nanorod array substrate, Nanotechnol. 19 (2008) 155707. [Back]
  100. D. Takaiwa, I. Hatano, K. Koga and H. Tanaka, Phase diagram of water in carbon nanotubes, Proceedings of the National Academy of Sciences, 105 (2008) 39-43. [Back] [Back to Top to top of page]

 

 

 

Home | Site Index | Site Map | Search | LSBU | Top

 

This page was established in 2007 and last updated by Martin Chaplin on 3 October, 2017


Creative Commons License
This work is licensed under a Creative Commons Attribution
-Noncommercial-No Derivative Works 2.0 UK: England & Wales License

 

The preferred Web Browser is Mozilla Firefox