Water site headerMasthead Island, Great Barrier Reef Print-me keygo to Water Visitor Book contributions
Go to my page Water Structure and Science

Water Structure and Science References 1501 - 1600

 

  1. E. Dickinson, Hydrocolloids as emulsifiers and emulsion stabilizers, Food Hydrocolloids 23 (2009) 1473-1482. [Back]
  2. P. Larouche, J.-J. Max and C. Chapados, Isotope effects in liquid water by infrared spectroscopy. II. factor analysis of the temperature effect on H2O and D2O, J. Chem. Phys. 129 (2008) 064503. The conclusions in this work was shown to be compatible with the works by Y. Maréchal, Infrared spectra of water. I. Effect of temperature and of H/D isotopic dilution J. Chem. Phys. 95 (1991) 5565-5573, and Zelsmann [177]. [Back]
  3. M. Xu, J. P. Larentzos, M. Roshdy, L. J. Criscenti and H. C. Allen, Aqueous divalent metal–nitrate interactions: hydration versus ion pairing, Phys. Chem. Chem. Phys. 10 (2008) 4793-4801. [Back]
  4. L. E. Bove, S. Klotz, A. Paciaroni and F. Sacchetti, Anomalous proton dynamics in ice at low temperatures, Phys. Res. Lett. 103 (2009) 165901; E.-S. Moon, C.-W. Lee and H. Kang, Proton mobility in thin ice films: a revisit, Phys. Chem. Chem. Phys. 10 (2008) 4814-4816. [Back, 2, 3]
  5. J. K. Beattie, The intrinsic charge at the hydrophobe/water interface, In Colloid Stability - The Role of Surface Forces, Part II, Vol 2, ed. T. F. Tadros (Wiley-VCH:Weinheim, 2007) pp. 153-164. [Back]
  6. V. P. Korolev , Properties and structure of aqueous urea up to the singular temperature of overcooled water: Isotopy effects, J. Struct. Chem. 49 (2008) 668-678. [Back]
  7. A. A. Galkin and V. V. Lunin, Subcritical and supercritical water: a universal medium for chemical reactions, Russian Chem. Rev. 74 (2005) 21-35; G. Brunner, Near critical, supercritical water. Part I. Hydrolytic and hydrothermal processes, J. Supercrit. Fluids 47 (2009) 373-381; G. Brunner, Near, supercritical water. Part II. Oxidative processes, J. Supercrit. Fluids 47 (2009) 382-390 [Back]
  8. M. Bernabei, A. Botti, F. Bruni, M. A. Ricci and A. K. Soper, Percolation and three-dimensional structure of supercritical water, Phys. Rev. E 78 (2008) 021505. [Back]
  9. E. F. Aziz, N. Ottosson, M. Faubel, I. V Hertel and B. Winter, Interaction between liquid water and hydroxide revealed by core-hole de-excitation, Nature 455 (2008) 89-91. [Back]
  10. C. D. Cappa, J. D. Smith, B. M. Messer, R. C. Cohen and R. J. Saykally, Nature of the aqueous hydroxide ion probed by X-ray absorption spectroscopy, J. Phys. Chem. A 111 (2007) 4776-4785. [Back]
  11. J. J. Novoa, F. Mota, C. Perez del Valle and M. Planas, Structure of the first solvation shell of the hydroxide anion. A model study using OH-(H2O)n (n = 4, 5, 6, 7, 11, 17) clusters, J. Phys. Chem. A, 101 (1997) 7842-7853. [Back]
  12. M. Smiechowski and J. Stangret,  Hydroxide ion hydration in aqueous solutions, J. Phys. Chem. A 111 (2007) 2889-2897. [Back]
  13. M. Meot-Ner and C. V. Speller, Filling of solvent shells about ions. 1. Thermochemical criteria and the effects of isomeric clusters, J Phys Chem. 90 (1986) 6616-6624. [Back]
  14. W. Li, Y. Zheng and R. Cheng, Transition of hydration states of poly(vinyl alcohol) in aqueous solution, Polymer 49 (2008) 4740-4744. [Back]
  15. J. Thøgersen, S. K. Jensen, C. Petersen, S. R. Keiding, Reorientation of hydroxide ions in water, Chem. Phys. Lett. 466 (2008) 1-5. [Back]
  16. P. Shin, Water, water, everywhere, Caveat emptor (buyer beware) The Latest Magazine (2004). [Back]
  17. J. E. B. Randles, Structure at the free surface of water and aqueous electrolyte solutions, Phys. Chem. Liq. 7 (1977) 107-179. [Back]
  18. I. Langmuir, Repulsive forces between charged surfaces in water, and the case of the Jones-Ray effect, Science 88 (1937) 430-432. [Back]
  19. I. Vavruch, Thermodynamic method for the evaluation of the pressure coefficient of a liquid-gas interface, Langmuir 11 (1995) 2843-2844. [Back]
  20. G. N. I. Clark, G. L. Hura, J. Teixeira, A. K. Soper and T. Head-Gordon, Small-angle scattering and the structure
    of ambient liquid water, PNAS 107 (2010) 14003-14007. [Back]
  21. B. Schwager and R. Boehler, H2O: another ice phase and its melting curve, High Pressure Res. 28 (2008) 431-433. [Back, 2]
  22. X. F. Pang and B. Deng, Investigation of changes in properties of water under the action of a magnetic field, Science in China Series G-Physics Mechanics Astron.  51(2008) 1621-1632. [Back]
  23. R. F. G. J. King, C. Cooke, S. Carroll and J. O'Hara, Estimating changes in hydration status from changes in body mass: Considerations regarding metabolic water and glycogen storage, J. Sports Sci. 26 (2008) 1361-1363. [Back]
  24. L. Rutten, E. Stolper, D. Spence, D. Reilly and T. Nicolai, Proof against Homeopathy does in fact support Homeopathy, ResearchGate (2006) [accessed Nov 23, 2015]; A. L. B. Rutten and C. F. Stolper, The 2005 meta-analysis of homeopathy: the importance of post-publication data, Homeopathy 97 (2008) 169-177; P. Wilson, Analysis of a re-analysis of a meta-analysis; in defence of Shang et al. Homeopathy 98 (2009) 127-128; A. L. B. Rutten and C. F. Stolper, Reply to Wilson, Homeopathy 98 (2009) 129; R. Lüdtke and A. L. B. Rutten, The conclusions on the effectiveness of homeopathy highly depend on the set of analyzed trials, J. Clin. Epidemiology 61 (2008) 1197-1204. [Back]
  25. E. Sedlák, L. Stagg and P. Wittung-Stafshede, Effect of Hofmeister ions on protein thermal stability: Roles of ion
    hydration and peptide groups? Arch. Biochem. Biophys. 479 (2008) 69-73. [Back] [Back to Top to top of page]
  26. G. O. Phillips, Giving nature a helping hand, in Gums and Stabilisers for the Food Industry 14, Ed P. A. Williams and G. O. Phillips (RSC Special publication 316, Cambridge, 2008) pp. 3-28. [Back]
  27. J. Kang, S. W. Cui, J. Chen, G. O. Phillips, Y. Wu and Q. Wang, New studies on gum ghatti (Anogeissus latifolia) part I. Fractionation, chemical and physical characterization of the gum, Food Hydrocolloids 25 (2011) 1984-1990; J. Kang, S. W. Cui, G. O. Phillips, J. Chen, Q. Guo and Q. Wang, New studies on gum ghatti (Anogeissus latifolia) part II. Structure characterization of an arabinogalactan from the gum by 1D, 2D NMR spectroscopy and methylation analysis, Food Hydrocolloids 25 (2011) 1991-1998; J. Kang, S. W. Cui, G. O. Phillips, J. Chen, Q. Guo and Q. Wang, New studies on gum ghatti (Anogeissus latifolia) Part III: Structure characterization of a globular polysaccharide fraction by 1D, 2D NMR spectroscopy and methylation analysis, Food Hydrocolloids 25 (2011) 1999-2007. [Back]
  28. T. Paeschke and W. R. Aimutis, The effect of hydrocolloids on satiety, and weight loss: a review, in Gums and Stabilisers for the Food Industry 14, Ed P. A. Williams and G. O. Phillips (RSC Special publication 316, Cambridge, 2008) pp. 313-325; S. Fiszman and P. Varela, The role of gums in satiety/satiation. A review, Food Hydrocolloids 32 (2013) 147-154. [Back]
  29. D. Pan, L.-M. Liu, G. A. Tribello, B. Slater, A. Michaelides and E. Wang, Surface energy and surface proton order of ice Ih, Phys. Rev. Lett. 101 (2008) 155703. [Back]
  30. K. Stokely, M. G. Mazzaa, H. E. Stanley and G. Franzese, Effect of hydrogen bond cooperativity on the behavior of water, PNAS 107 (2010) 1301-1306; arXiv:0805.3468v2, [cond-mat.soft] (2008). [Back, 2, 3]
  31. H. Lu, Y. Wang, Y. Wu, P. Yang, L. Li and S, Li, Hydrogen-bond network and local structure of liquid water: An atoms-in-molecules perspective, J. Chem. Phys. 129 (2008) 124512. [Back]
  32. D. E. Yount, Skins of varying permeability: A stabilization mechanism for gas cavitation nuclei, J. Acoust. Soc. Am. 65 (1979) 1429-1439. [Back]
  33. K. Winkel, M. S. Elsaesser, E. Mayer and T. Loerting, Water polyamorphism: Reversibility and(dis)continuity, J. Chem. Phys. 128 (2008) 044510. [Back]
  34. K. Winkel, M. Bauer, E. Mayer, M. Seidl, M. S. Elsaesser and T. Loerting, Structural transitions in amorphous H2O
    and D2O: the effect of temperature, J. Phys.: Condens. Matter 20 (2008) 494212. [Back]
  35. M. Lund and P. Jungwirth, Patchy proteins, anions and the Hofmeister series, J. Phys.: Condens. Matter 20 (2008) 494218. [Back]
  36. M. Pastorczak, M. Kozanecki and J. Ulanski, Raman resonance effect in liquid water, J. Phys. Chem. A 112 (2008) 10705-10707. [Back]
  37. M. Scheel, R. Seemann, M. Brinkmann, M. DiMichiel, A. Sheppard and S. Herminghaus, Liquid distribution and cohesion in wet granular assemblies beyond the capillary bridge regime, J. Phys.: Condens. Matter 20 (2008) 494236. [Back]
  38. Y. Kajihara, M. Inui, S. Hosokawa, K. Matsuda and A. Q. R. Baron, Dynamical inhomogeneity of liquid Te near the melting temperature proved by inelastic x-ray scattering measurements, J. Phys.: Condens. Matter 20 (2008) 494244. [Back]
  39. V. P. Melnikov, A. N. Nesterov, A. M. Reshetnikov and A. G. Zavodovsky, Evidence of liquid water formation during methane hydrates dissociation below the ice point, Chem. Eng. Sci. (2008), doi:10.1016/j.ces.2008.10.067. [Back]
  40. D. Banerjee and S. V. Bhat, Spin probe ESR signature of freezing in water: Is it global or local? arXiv:0810.4682v1 [cond-mat.soft] (2008). [Back]
  41. I. Brovchenko and A. Oleinikova, Which properties of a spanning network of hydration water enable biological functions? ChemPhysChem 9 (2008) 2695-2702. [Back]
  42. I. Brovchenko and A. Oleinikova, Multiple phases of liquid water ChemPhysChem 9 (2008) 2660-2675. [Back]
  43. A. K. Soper, Structural transformations in amorphous ice and supercooled water and their relevance to the phase diagram of water, Mol. Phys. 106 (2008) 2053-2076. [Back]
  44. R. J. Nelmes, J. S. Loveday, T. Strässle, C. L. Bull, M. Guthrie, G. Hamel and S. Klotz, Annealed high-density amorphous ice under pressure, Nature Physics 2 (2006) 414-418; P. H. Handle, M. Seidl and T. Loerting, Relaxation time of high-density amorphous ice, Phys. Rev. Lett. 108 (2012) 225901; G . P. Johari, Comment on: “Relaxation time of high-density amorphous ice, by P. H. Handle, M. Seidl, T. Loerting; Phys. Rev. Lett. 108 (2012) 225901”. The α-relaxation time of strained state of high-density amorphous ice at T < Tg, its Tg, and its transformations, Thermochim. Acta 589 (2014) 76-84; P. H. Handle, M. Seidl, V. Fuentes-Landete and T. Loerting, Ex situ studies of relaxation and crystallization in high-density amorphous ice annealed at 0.1 and 0.2 GPa Includes response to: “Comment on: ‘Relaxation time of high-density amorphous ice’ ” by G. P. Johari, Thermochim. Acta 636 (2016) 11-22. [Back]
  45. M. Bauer, M. S. Elsaesser, K. Winkel, E. Mayer and T. Loerting, Compression-rate dependence of the phase transition from hexagonal ice to ice II and/or ice III, Phys. Rev. B 77 (2008) 220105. [Back]
  46. D. T. Bowron, J. L. Finney, A. Hallbrucker, I. Kohl, T. Loerting, E. Mayer and A. K. Soper, The local and intermediate range structures of the five amorphous ices at 80 K and ambient pressure: A Faber-Ziman and Bhatia-Thornton analysis, J. Chem. Phys.125 (2006) 194502. [Back]
  47. G. Jákli, Molar volumes of LiI in H2O and D2O solutions; Structural hydration interactions, J. Chem. Thermodynamics 41 (2009) 62-68. [Back]
  48. E. Ascolese and G. Graziano, On the cold denaturation of globular proteins, Chem. Phys. Lett. 467 (2008) 150-153. [Back]
  49. T. Nakayama, THz frequency dynamics of network/guest atom systems: Liquid water, clathrates, and network glasses, Nuclear Instruments and Methods in Physics Research A 600 (2009) 266-268. [Back]
  50. K. Ovchinnikova and G. H. Pollack, Can water store charge? Langmuir 25 (2009) 542-547; H. R. Corti and A. J. Colussi, Do concentration cells store charge in water? Comment on Can water store charge? Langmuir 25 (2009) 6587-6589; K. Ovchinnikova and G. H. Pollack, Response to comment on ¨Can Water Store Charge? Langmuir25(2009) 11202; H. R. Corti and A. J. Colussi, Response to Reply to Comment on Can water store charge? Langmuir 25 (2009) 11203. [Back] [Back to Top to top of page]
  51. V. Buch, H. Groenzin, I. Li, M. J. Shultz and E. Tosatti, Proton order in the ice crystal surface, PNAS 105 (2008) 5969-5974. [Back]
  52. J.-L. Demangeat, NMR water proton relaxation in unheated and heated ultrahigh aqueous dilutions of
    histamine: Evidence for an air-dependent supramolecular organization of water. Mol. Liquids 144 (2009) 32-39; J.-L. Demangeat, NMR relaxation evidence for solute-induced nanosized superstructures in ultramolecular aqueous dilutions of silica–lactose, J. Mol. Liquids 155 (2010) 71-79; J.-L. Demangeat, Gas nanobubbles and aqueous nanostructures: the crucial role of dynamization, Homeopathy 104 (2015) 101-115. [Back]
  53. E. A. Disalvo, F. Lairion, F. Martini, E. Tymczyszyn, M. Frías, H. Almaleck and G. J. Gordillo, Structural and functional properties of hydration and confined water in membrane interfaces, Biochim. Biophys. Acta Biomembranes 1778 (2008) 2655-2670. [Back, 2]
  54. J. Song, Insight into “Insoluble Proteins” with pure water, FEBS Letters 583 (2009) 953-959 . [Back]
  55. B. M. Auer and J. L. Skinner, Water: Hydrogen bonding and vibrational spectroscopy, in the bulk liquid and
    at the liquid/vapor interface, Chem. Phys. Lett. 470 (2009) 13-20. [Back]
  56. L. Copeland, J. Blazek, H. Salman and M. C. Tang, Form and functionality of starch, Food Hydrocolloids 23 (2009) 1527-1534. [Back]
  57. T. Tokushima, Y. Harada, O. Takahashi, Y. Senba, H. Ohashi, L. G. M. Pettersson, A. Nilsson and S. Shin, High resolution X-ray emission spectroscopy of liquid water: The observation of two structural motifs, Chem. Phys. Lett. 460 (2008) 387-400. [Back]
  58. C. J. Edmonds and D. Burford, Should children drink more water? The effects of drinking water on cognition in children, Appetite 52 (2008) 776-779; C. J. Edmonds and B. Jeffes, Does having a drink help you think? 6–7-Year-old children show improvements in cognitive performance from baseline to test after having a drink of water, Appetite 53 (2009) 469-472. [Back]
  59. Y. Marcus, On water structure in concentrated salt solutions, J. Solution Chem. 38 (2009) 513-516. [Back]
  60. A. Herráez, R. M. Hanson and L. Glasser, Interactive 3D phase diagrams using Jmol, J. Chem. Educ. 86 (2009) 566. [Back, 2]
  61. C. G. Elles, C. A. Rivera, Y. Zhang, P. A. Pieniazek and S. E. Bradforth, Electronic structure of liquid water from polarization-dependent two-photon absorption spectroscopy, J. Chem. Phys. 130 (2009) 084501. [Back]
  62. M. J. Paterson, J. Kongsted, O. Christiansen, K. V. Mikkelsen and C. B. Nielsen, Two-photon absorption cross sections: An investigation of solvent effects. Theoretical studies on formaldehyde and water J. Chem. Phys. 125 (2006) 184501. [Back]
  63. H. Yada, M. Nagai and K. Tanaka, The intermolecular stretching vibration mode in water isotopes investigated with broadband terahertz time-domain spectroscopy, Chem. Phys. Lett. 473 (2009) 279-283. [Back, 2]
  64. C. J. Wu, L. E. Fried, L. H. Yang, N. Goldman and S. Bastea, Catalytic behaviour of dense hot water, Nature Chem. 1 ( 2009) 57-62. [Back]
  65. B. Nguyen, S. Neidle and W. D. Wilson, A role for water molecules in DNA-ligand minor groove recognition, Acc. Chem. Res. 42 (2009) 11-21. [Back]
  66. R. S. Varma, Clean chemical synthesis in water, Org. Chem. Highlights (2007), February. [Back]
  67. Y. Marcus, Effect of ions on the structure of water: Structure making and breaking, Chem. Rev. 109 (2009) 1346-1370. [Back]
  68. A. K. Lyashchenko and G. G. Malenkov, X-ray investigation of ammonium fluoride-ice systems, J. Structural Chem. 10 (1969) 616-617, Z. Strukt. Khim. 10 (1969) 724-725; B. Barbiellini, Ch. Bellin, G. Loupias, T. Buslaps and A. Shukla, How the hydrogen bond in NH4F is revealed with Compton scattering, Phys. Rev B 79 (2009) 155115. [Back]
  69. C. Corsaro, J. Spooren, C. Branca, N. Leone, M. Broccio, C. Kim, S.-H. Chen, H. E. Stanley and F. Mallamace, Clustering dynamics in water/methanol mixtures: A nuclear magnetic resonance study at 205 K<T<295 K, J. Phys. Chem. B 112 (2008) 10449-10454. [Back]
  70. V. M. F. Gonçalves, A. Reis, M. R. M. Domingues, J. A. Lopes-da-Silva, A. M. Fialho, L. M. Moreira, I.l Sá-Correia and M. A. Coimbra, Structural analysis of gellans produced by Sphingomonas elodea strains by electrospray tandem mass spectrometry, Carbohydr. Polymers 77 (2009) 10-19. [Back]
  71. V. L. Campo, D. F. Kawano, D. B. da Silva Jr. and I. Carvalho, Carrageenans: Biological properties, chemical modifications and structural analysis – A review, Carbohydr. Polymers 77 (2009) 167-180; J. Necas and L. Bartosikova, Carrageenan: a review, Veterinarni Medicina, 58 (2013) 187-205. [Back]
  72. A. F. Goncharov, C. Sanloup, N. Goldman, J. C. Crowhurst, S. Bastea, W. M. Howard, L. E. Fried, N. Guignot, M. Mezouar and Y. Meng, Dissociative melting of ice VII at high pressure, J. Chem. Phys. 130 (2009) 124514. [Back]
  73. A. Cavagna, Supercooled liquids for pedestrians, Phys. Reports 476 (2009) 51-124; arXiv:0903.4264v1 [cond-mat.stat-mech]. [Back]
  74. H.-J. Chung, Q. Liu, Impact of molecular structure of amylopectin and amylose on amylose chain
    association during cooling, Carbohydr. Polymers 77 (2009) 807-815. [Back]
  75. X. Chen, T. Yang, S. Kataoka, and P. S. Cremer, Specific ion effects on interfacial water structure near
    macromolecules, J. Am. Chem. Soc.129 (2007) 12272-12279. [Back] [Back to Top to top of page]
  76. G. Astray, C. Gonzalez-Barreiro, J.C. Mejuto, R. Rial-Otero, J. Simal-Gándara, A review on the use of cyclodextrins in foods, Food Hydrocolloids 23 (2009) 1631-1640. [Back]
  77. (a) M. Kinoshita, Roles of translational motion of water molecules in sustaining life, Fronteirs Biosci. 14 (2009) 3419-3454; (b) M. Kinoshita, Importance of translational entropy of water in biological self-assembly processes like protein folding, Int. J. Mol. Sci. 10 (2009) 1064-1080. [Back, 2]
  78. M. Kinoshita and T. Yoshidome, Molecular origin of the negative heat capacity of hydrophilic hydration, J. Chem. Phys. 130 (2009)) 144705. [Back]
  79. K. T. Wikfeldt, M. Leetmaa, M. P. Ljungberg, A. Nilsson and L. G. M. Pettersson, On the range of water structure models compatible with X-ray and neutron diffraction data, J. Phys. Chem. B 113 (2009) 6246-6255. [Back]
  80. W. Bailey and K. Sicard, Water fluoridation status: Where are we? Dental Abstr. 54 (2009) 116-117. [Back]
  81. Yu. S. Ovodov, Current views on pectin substances, Russian J. Bioorg. Chem. 35 (2009) 269-284. B. M. Yapo, Pectic substances: From simple pectic polysaccharides to complex pectins—A new hypothetical model, Carbohydr. Polymers 86 (2011) 373-385. [Back]
  82. C. G. Salzmann, P. G. Radaelli, E. Mayer and J. L. Finney, Ice XV: a new thermodynamically stable phase of ice, Phys. Rev. Lett. 103, (2009) 105701; arXiv:0906.2489v1. [Back, 2, 3]
  83. H. R. Corti, Comments on “New physico-chemical properties of extremely dilute solutions. A conductivity study
    at 25 °C in relation to ageing”, J. Solution Chem. 37 (2008) 1819-1824. [Back]
  84. H. Chen, J. Xu and G. A. Voth, Unusual hydrophobic interactions in acidic aqueous solutions, J. Phys. Chem. B, 113 (2009) 7291-7297. [Back]
  85. S. Chirumbolo M. Brizz,i R. Ortolani, A. Vella and P. Bellavite, Received:Inhibition of CD203c membrane up-regulation in human basophils by high dilutions of histamine: a controlled replication study, Inflamm. Res.58 (2009) 755-764. [Back]
  86. F. Alimi, M. M. Tlili, M. B. Amor, G. Maurin, C. Gabrielli, Effect of magnetic water treatment on calcium carbonate precipitation. Influence of the pipe material, Chem. Eng. Processing 48 (2009) 1327-1332. [Back]
  87. E. Gojło, M. Smiechowski, A. Panuszko and J. Stangret, Hydration of carboxylate anions: Infrared spectroscopy of aqueous solutions, J. Phys. Chem. B 113 (2009) 8128-8136. [Back]
  88. V. L. Voeikov and E. Del Giudice, Water respiration - The basis of the living state, Water 1 (2009) 52-75. [Back]
  89. T. Yokono, S. Shimokawa, M. Yokono and H. Hattori, Infra-red spectroscopic study of structural change of liquid water induced by sunlight irradiation, Water 1 (2009) 29-34. [Back, 2]
  90. K. Sieg, E. Starokozhev, M. U. Schmidt and W. Püttmann, Inverse temperature dependence of Henry’s law coefficients for volatile organic compounds in supercooled water, Chemosphere 77 (2009) 8-14. [Back]
  91. M. Chaplin, Theory vs experiment: What is the surface charge of water? Water 1 (2009) 1-28. [Back, 2]
  92. M. F. Chaplin, Structuring and behaviour of water in nanochannels and confined dsorption and Phase Behaviour in Nanochannels and Nanotubes, L. Dunne and G. Manos, Ed. Springer, (2009) pp. 241-255. [Back]
  93. M. J. Gidley, I. Hanashiro, N. M. Hani, S. E. Hill, A. Huber, J-L. Jane, Q. Liu, G. A. Morris, A. Rolland-Sabaté, A. M. Striegel, R. G. Gilbert, Reliable measurements of the size distributions of starch molecules in solution: Current dilemmas and recommendations, Carbohydr. Polymers 79 (2010) 255-261. [Back]
  94. G. Sworn, G. R.Sanderson and W. Gibson, Gellan gum fluid gels, Food Hydrocolloids 9 (1995) 265-271. [Back]
  95. L. Xu, F. Mallamace, Z. Yan, F. W. Starr, S. V. Buldyrev and H. E. Stanley, Appearance of a fractional Stokes–Einstein relation in water and a structural interpretation of its onset, Nature Phys. 5 (2009) 565 -569. [Back]
  96. D. Flammini, M. A. Ricci, and F. Bruni, A new water anomaly: The temperature dependence of the proton mean
    kinetic energy, J. Chem. Phys. 130 (2009) 236101; A. Giuliani, M. A. Ricci and F. Bruni, Water proton environment: a newwater anomaly at atomic scale?, In Liquid Polymorphism: Adv. Chem.Phys. 152, Ed. H. E. Stanley (2013, John Wiley & Sons) pp 175-187. [Back]
  97. R. Cai, H. Yang, J. He, W. Zhu, The effects of magnetic fields on water molecular hydrogen bonds, J. Mol. Structure 938 (2009) 15-19. [Back]
  98. Y. Nishiyama, Structure and properties of the cellulose microfibril, J. Wood Sci. 55 (2009) 241-249. [Back]
  99. Y. Marcus, The standard partial molar volumes of ions in solution. Part 4. Ionic volumes in water at 0-100 °C, J. Phys. Chem. B 113 (2009) 10285-10291. [Back, 2]
  100. S. K. Ramadugu, Y.-H. Chung, J. Xia and C. J. Margulis, When sugars get wet. A comprehensive study of the behavior of water on the surface of oligosaccharides, J. Phys. Chem. B 113 (2009) 11003-11015. [Back, 2]

 

 

 

Home | Site Index | Site Map | Search | LSBU | Top

 

This page was established in 2008 and last updated by Martin Chaplin on 15 August, 2017


Creative Commons License
This work is licensed under a Creative Commons Attribution
-Noncommercial-No Derivative Works 2.0 UK: England & Wales License