Your browser does not support JavaScript!
Water site headerMasthead Island, Great Barrier Reef Print-me keygo to Water Visitor Book contributions
Go to my page Water Structure and Science

Water Structure and Science, References 1801 -> 1900


  1. M. Sakairi, Water-cluster-detecting breath sensor and applications in cars for detecting drunk or drowsy driving, IEEE Sensors Journal, 12 (2012) 1078-1083. [Back]
  2. W. Wagner and A. Pruss, The IAPWS Formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use, Journal of Physical Chemistry Reference Data, 31 (2002) 387-535; The International Association for the Properties of Water and Steam,Prague, Czech Republic, Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (2018). [Back]
  3. J. A. Goff and S. Gratch, Low-pressure properties of water from -160 to 212°F, Transactions of the American Society of Heating and Ventilating Engineers, (1946) 95-122. [Back]
  4. M. Banno, K. Ohta and K. Tominaga, Vibrational dynamics of acetate in D2O studied by infrared pump–probe spectroscopy, Physical Chemistry Chemical Physics, 14 (2012) 6359-6366. [Back]
  5. M. Jana and S. Bandyopadhyay, Conformational flexibility of a protein–carbohydrate complex and the structure and ordering of surrounding water, Physical Chemistry Chemical Physics, 14 (2012) 6628-6638. [Back]
  6. M. F. Chaplin, Fibre and water binding. Proceedings of the Nutritional Society, 62 (2003) 223-227; (unfortunately this reference contains references to liters rather than milliliters throughout). [Back]
  7. F. M. Floris, Excess densities and equimolar surfaces for spherical cavities in water, Journal of Chemical Physics,126 (2007) 074505; F. M. Floris, Note: Volume errors and equimolar surfaces, Journal of Chemical Physics, 136 (2012) 116102. [Back]
  8. M. M. Rakorĉević, The genetic code as a Golden mean determined system, BioSystems, 46 (1998) 283-291. [Back]
  9. M. Benoit, D. Marx and M. Parrinello, Tunnelling and zero-point motion in high-pressure ice, Nature, 392 (1998) 258-261. [Back, 2]
  10. Y. Wang, H. Liu, J. Lv, L. Zhu, H. Wang and Y. Ma, High pressure partially ionic phase of water ice, Nature Communications, 2 (2011) 563.[Back]
  11. M. Hishida and K. Tanaka, Long-range hydration effect of lipid membrane studied by terahertz time-domain spectroscopy, Physical Review Letters, 106 (2011) 158102. [Back]
  12. C. Vogt, K. Laihem and C. Wiebusch, Speed of sound in bubble-free ice, Journal of the Acoustical Society of America, 124 (2008)3613-3618. [Back]
  13. A. Schiraldi, D. Fessas and M. Signorelli, Water activity in biological systems – A review, Polish Journal of Food and Nutrition Sciences, 62 (2012) 5-13. [Back]
  14. W. Hujo, B. S. Jabes, K. V. Rana, C. Chakravarty and V. Molinero,The rise and fall of anomalies in tetrahedral liquids Journal of Statistical Physics, 145 (2011) 293-312;; B S. Jabes, D. Nayar, D. Dhabal, V. Molinero and C. Chakravarty, Water and other tetrahedral liquids: order, anomalies and solvation, Journal of Physics: Condensed Matter, 24 (2012) 284116. [Back]
  15. M. D. Torres, R. Moreira, F. Chenlo, and M. J. Vázquez, Water adsorption isotherms of carboxymethyl cellulose, guar, locust bean, tragacanth and xanthan gums, Carbohydrate Polymers, 89 (2012) 592-598. [Back]
  16. Z. Zhang, L. Piatkowski, H. J. Bakker and M. Bonn, Ultrafast vibrational energy transfer at the water/air interface revealed by two-dimensional surface vibrational spectroscopy, Nature Chemistry, 3 (2011) 888-893. [Back]
  17. X. Ma, P. Deng, X. Wang, C. Zhang and X. Hou, Direct determination of deuterium of wide concentration range in water by nuclear magnetic resonance, Talanta, 97 (2012) 450-455. [Back]
  18. M. Ji, K. Umemoto, C.-Z. Wang, K.-M. Ho and R. M. Wentzcovitch, New ultrahigh pressure phases of H2O ice predicted using an adaptive genetic algorithm, (2011) arXiv:1108.4164v1 [cond-mat.mtrl-sci] 21 Aug 2011; A. Hermann, N. W. Ashcroft and R. Hoffmann, high-pressure ices, Proceedings of the National Academy of Sciences, 109 (2012) 745-750. [Back]
  19. B. Pamuk, J. M. Soler, R. Ramírez, C. P. Herrero, P. W. Stephens, P. B. Allen and M.-V. Fernández-Serra, Anomalous nuclear quantum effects in ice, Physical Review Letters, 108 (2012) 193003; arXiv:1111.4870v3 [cond-mat.mtrl-sci] 20 Feb 2012. [Back]
  20. A. D. Fortes, I. G. Wood, D. Grigoriev, M. Alfredsson, S. Kipfstuhl, K. S. Knight and R. I. Smith, No evidence for large-scale proton ordering in Antarctic ice from powder neutron diffraction, Journal of Chemical Physics, 120 (2004) 11376. [Back]
  21. L. G. Dowell and A. P. Rinfret, Low temperature forms of ice as studied by X-ray diffraction, Nature, 188 (1960) 1144-1148. [Back]
  22. G. P. Arnold, E. D. Finch, S. W. Rabideau and R. G. Wenzel, Neutron-diffraction study of ice polymorphs. III. Ice Ic, Journal of Chemical Physics, 49 (1968) 4365-4369. [Back]
  23. B. Kamb and A. Prakash, Structure of ice III, Acta Crystallographica B, 24 (1968) 1317-1327. [Back]
  24. B. Kamb, Structure of ice VI, Science, 150 (1965) 205-209. [Back]
  25. N. F. Bunkin, B. W. Ninham, V. A. Babenko, N. V. Suyazov and A. A. Sychev, Role of dissolved gas in optical breakdown of water: Differences between effects due to helium and other gases, Journal of Physical Chemistry B, 114 (2010) 7743-7752. [Back, 2, 3] [Back to Top to top of page]
  26. N. F. Bunkin, B. W. Ninham, P. S. Ignatiev, V. A. Kozlov, A. V. Shkirin and A. V. Starosvetskij, Long-living nanobubbles of dissolved gas in aqueous solutions of salts and erythrocyte suspensions, Journal of Biophotonics 4 (2011) 150-164. [Back]
  27. P. Lo Nostro and B. W. Ninham, Hofmeister phenomena: an update on ion specificity in biology, Chemical Reviews, 112 (2012) 2286-2322. [Back]
  28. A. Bankura and A. Chandra, Hydration structure and dynamics of a hydroxide ion in water clusters of varying size and temperature: Quantum chemical and ab initio molecular dynamics studies, Chemical Physics, 400 (2012) 154-164. [Back, 2]
  29. M. Huš and T. Urbic Strength of hydrogen bonds of water depends on local environment, Journal of Chemical Physics, 136 (2012) 144305; see also S. Iwata, Analysis of hydrogen bond energies and hydrogen bonded networks in water clusters (H2O)20 and (H2O)25 using the charge-transfer and dispersion terms, Physical Chemistry Chemical Physics, 16 (2014) 11310-11317. [Back]
  30. M. H. Abraham and W. E. Acree Jr., The hydrogen bond properties of water from 273 K to 573 K; equations
    for the prediction of gas-water partition coefficients, Physical Chemistry Chemical Physics, 14 (2012) 7433-7440. [Back]
  31. M. Eigen, Proton transfer, acid-base catalysis, and enzymatic hydrolysis. Part 1: elementary processes. Angewandte Chemie International Edition, 3 (1964) 1-19; from Angewandte Chemie, 75 (1963) 489. [Back]
  32. O. Haida, T. Matsuo, H. Suga and S. Seki, Calorimetric study of the glassy state X. Enthalpy relaxation at the glass-transition temperature of hexagonal ice, Journal of Chemical Thermodynamics, 6 (1974) 815-825. [Back]
  33. N. H. Fletcher, In The Chemical Physics of Ice, (Cambridge University Press; 1970) pp. 54, [Back]
  34. S. C. Flores, J. Kherb, N. Konelick, X. Chen and P.l S. Cremer, The effects of Hofmeister cations at negatively charged hydrophilic surfaces, Journal of Physical Chemistry C 116 (2012) 5730-5734. [Back]
  35. M. S. Shell, P. G. Debenedetti and A. Z. Panagiotopoulos, Molecular structural order and anomalies in liquid silica
    Physical Review, E 66 (2002) 011202. [Back]
  36. J. Stähler, C. Gahl and M. Wolf, Dynamics and reactivity of trapped electrons on supported ice crystallites, Accounts of Chemical Research, 45 (2012) 131-138. [Back]
  37. C. Knight and G. A. Voth, The curious case of the hydrated proton, Accounts of Chemical Research, 45 (2012) 101-109. [Back]
  38. D. Thirumalai, G. Reddy, Role of water in protein aggregation and amyloid polymorphism, Accounts of Chemical Research, 45 (2012) 83-92. [Back]
  39. N. Agmon, Liquid water: from symmetry distortions to diffusive motion, Accounts of Chemical Research, 45 (2012) 63-73. [Back]
  40. R. S. Smith, N. G. Petrik, G. A. Kimmel and B. D. Kay, Thermal and nonthermal physiochemical processes in nanoscale films of amorphous solid water, Accounts of Chemical Research, 45 (2012) 33-42. [Back, 2]
  41. O. Marsalek, F. Uhlig, J. Vandevondele and P. Jungwirth, Structure, dynamics, and reactivity of hydrated electrons by ab initio molecular dynamics, Accounts of Chemical Research, 45 (2012) 23-32. [Back, 2]
  42. L. R. Matija, R. N. Tsenkova, M. Miyazaki, K. Bamba and J. S. Muncan, Aquagrams: Water spectral pattern as characterization of hydrogenated nanomaterial, Faculty Mech. Eng. (Belgrade) Trans. 40 (2012) 51-56. [Back]
  43. D. P. G. Hamon and G. F. Taylor, A synthesis of tetracyclo[5,3,1,12,6,04,9]dodecane (iceane), Australian Journal of Chem. 29 (1976) 1721-1734. [Back]
  44. L. A. Paquette, R. J. Ternansky, D. W. Balogh and G. Kentgen, Total synthesis of dodecahedrane, Journal of the American Chemical Society, 105 (1983) 5446-5450. [Back]
  45. A. N. Enyashin and A. L. Ivanovski, Atomic and electronic structures and stability of icosahedral nanodiamonds and onions, Phys. Solid State, 49 (2007) 392-397 (Fizika Tverdogo Tela, 49 (2007) 378-383). [Back]
  46. C. D. Latham and M. I. Heggie, Hypothetical C100 molecule and diamond-graphite interface: unstable and metastable states of carbon, Diamond Rel. Mater. 4 (1995) 528-531. [Back]
  47. L. Zeger and E. Kaxiras, Compact carbon clusters with tetrahedral bonding and icosahedral symmetry, Computational Materials Science, 1 (1993) 403-410. [Back]
  48. C. Genty and G. Reversat, Isotopic analysis of tritiated water, Anal. Chem. 45 (1973) 1710-1715. [Back]
  49. J. Lee and S.-H. Kim, Water polygons in high-resolution protein crystal structures, Protein Science,. 18 (2009) 1370-1376. [Back]
  50. L. Van Sang, The relationship between the formation of clusters containing tetrahedral molecules and the dynamic and thermodynamic anomalies of cooled TIP4P/2005 water, Journal of the Korean Physics Society, 69 (2016) 40-44. [Back] [Back to Top to top of page]
  51. X. Ma, B. Wigington and D. Bouchard, Fullerene C60: Surface energy and interfacial interactions in aqueous systems, Langmuir, 26 (2010) 11886-11893. [Back]
  52. T. Loerting and J. Bernard, Aqueous carbonic acid (H2CO3), Chemphyschem 11 (2010) 2305-2309. A. L. Soli and R. H. Byrne, CO2 system hydration and dehydration kinetics and the equilibrium CO2/H2CO3 ratio in aqueous NaCl solution, Marine Chem. 78 (2002) 65-73. S. K. Lower, Carbonate equilibria in natural waters A Chem1 Reference Text (1999). [Back]
  53. M. Manciu and E. Ruckenstein, Ions near the air/water interface. II: Is the water/air interface acidic or basic? Predictions of a simple model, Colloids Surfaces A: Physicochem. Eng. Asp. 404 (2012) 93-100. [Back]
  54. J. L. Pérez-Díaz, M. A. Álvarez-Valenzuela and J. C. García-Prada, The effect of the partial pressure of water vapour on the surface tension of the liquid water-air interface, Journal of Colloid and Interface Science, 381 (2012) 180-2. [Back]
  55. Y.Katsir, Y. Shapira, Y. Mastai, R. Dimova and E. Ben-Jacob, Entropic effects and slow kinetics revealed in titrations of D2O-H2O solutions with different D/H ratios, Journal of Physical Chemistry B 114 (2010) 5755-5763. [Back]
  56. G. Lenormand, E. Millet, C. Y. Park, C. C. Hardin, J. P. Butler, N. I. Moldovan and J. J. Fredberg, Dynamics of the cytoskeleton: How much does water matter? Physical Review, E 83 (2011) 061918. [Back]
  57. G. A. Bottomley and R. L. Scott, Excess volumes for H20 +D20 liquid mixtures, Aust. Journal of Chem. 29 (1976) 427-428. [Back]
  58. Y. Mao and Y. Zhang, Thermal conductivity, shear viscosity and specific heat of rigid water models, Chemical Physics Letters, 542 (2012) 37-41. [Back]
  59. E. A. Jagla, The interpretation of water anomalies in terms of core-softened models, Braz. Journal of Phys. 34 (2004) 17-23. [Back, 2, 3, 4]
  60. V. Holten, C. E. Bertrand, M. A. Anisimov and J. V. Sengers, Thermodynamic modeling of supercooled water, Technical Report prepared for the International Association for the Properties of Water and Steam (September 2011). [Back, 2]
  61. J. Black, The supposed effect of boiling upon water, in disposing it to freeze more readily, ascertained by experiments, Phil. Trans. 65 (1775) 124-128. [Back]
  62. P. Tremaine, K. Zhang, P. Bénézeth and C. Xiao, Ionization equilibria of acids and bases under hydrothermal conditions, in Aqueous systems at elevated temperatures and pressures: Physical chemistry in water, steam and hydrothermal solutions, ed. D. A. Palmer, R. Fernández-Prini and A. H. Harvey (Elsevier, Amsterdam, 2004) pp. 441-492. [Back]
  63. A. F. Peery, P. R. Barrett, D. Park, A. J. Rogers, J. A. Galanko, C. F. Martin and R. S. Sandle,r A high-fiber diet does not protect against asymptomatic diverticulosis Gastroenterology 142 (2012) 266-272. [Back]
  64. R. D. Heijtz, S. Wang, F. Anuar, Y. Qian, B. Björkholm, A. Samuelsson, M. L. Hibberd, H. Forssberg and S. Pettersson, Normal gut microbiota modulates brain development and behavior, Proceedings of the National Academy of Sciences, 108 (2011) 3047-3052. [Back]
  65. D. W. Shoesmith and W. Lee, The ionization constant of heavy water (D2O) in the temperature range 298 to 523 K, Can. Journal of Chem. 54 (1976) 3553-3558. [Back]
  66. A. Perera, On the microscopic structure of liquid water, Molecular Physics, 109 (2011) 2433-2441; A. Perera, R. Mazighi and B. Kežíc. Fluctuations and micro-heterogeneity in aqueous mixtures, Journal of Chemical Physics, 136 (2012) 174516 [Back, 2]
  67. J. Poater, M. Swart, l. F. Guerra and F. M. Bickelhaupt, Solvent effects on hydrogen bonds in Watson-Crick, mismatched, and modified DNA base pairs, Comput. Theor. Chem. 998 (2012) 57-63 [Back, 2]
  68. K. Johnson, M. Price-Gallagher, O. Mamer, A. Lesimple, C. Fletcher, Y. Chen, X.i Lu, M. Yamaguchi, and X.-C. Zhang, Water vapor: an extraordinary terahertz wave source under optical excitation, (2009)

    arXiv:0902.2024v1[physics.optics]. [Back]

  69. L. Yang, C. A. Tulk, D. D. Klug, I. L. Moudrakovski, C. I. Ratcliffe, J. A. Ripmeester, B. C. Chakoumakos, L. Ehm, C. D. Martin and J. B. Parise, Synthesis and characterization of a new structure of gas hydrate, Proceedings of the National Academy of Sciences, 106 (2009) 6060-6064. [Back]
  70. S. Yoshioki, Identification of a mechanism of transformation of clathrate hydrate structures I to II or H, Journal of Molecular Graphics and Modelling, 37 (2012) 39-48. [Back]
  71. A. Jana, A. D. Jana, I. Bhoumick, T. Mistri, M. Dolai, K. K. Das, A. M. Panja and M. Ali, First crystallographic report on a novel 2D layer of water pentagons: L5(7) water motif enclathrating [Co(Cyclam)Cl2], Inorg. Chem. Comm. 24(2012) 157-161. [Back, 2]
  72. J. H. van 't Hoff, Die Rolle des osmotischen Druckes in der Analogie zwischen Lösungen und Gasen, Zeitschrift für Physikalische Chemie, 1 (1887) 481-508. translated and condensed in Journal of Membrane Science ence, 100 (1995) 39-44. [Back]
  73. K. Alleva, O. Chara and G. Amodeo, Aquaporins: another piece in the osmotic puzzle, FEBS Letters 586 (2012) 2991-2999. [Back]
  74. J. M. Herbert and M. Head-Gordon, First-principles, quantum-mechanical simulations of electron solvation by a water cluster,Proceedings of the National Academy of Sciences, 103 (2006) 14282-14287. L. Turi, W.-S. Sheu and P. J. Rossky, Characterization of excess electrons in water-cluster anions by quantum simulations, Science, 309 (2005) 914-917. [Back]
  75. M. Fleischmann and S. Pons, Electrochemically induced nuclear fusion of deuterium, J. Electroanal. Chem. 261 (1989) 301-308. [Back] [Back to Top to top of page]
  76. S. K. Mazloomi and N. Sulaiman, Influencing factors of water electrolysis electrical efficiency, Renewable and Sustainable Energy Reviews 16 (2012) 4257-4263; K. Mazloomi, N. Sulaiman and H. Moayedi, Electrical efficiency of electrolytic hydrogen production, International Journal of Electrochemical Science, 7 (2012) 3314-3326. [Back]
  77. M. J. T. C. van der Niet, N. Garcia-Araez, J. Hernández, J. M. Feliu, M. T.M. Koper, Water dissociation on well-defined platinum surfaces: The electrochemical perspective, Catal. Today 202 (2013) 105-113; M. Shen, N. Bennett, Y. Ding and K. Scott, A concise model for evaluating water electrolysis, International Journal of Hydrogen Energy, 36 (2011) 14335-14341; J. Rossmeisl, A. Logadottir and J. K. Nørskov, Electrolysis of water on (oxidized) metal surfaces, Chemical Physics, 319 (2005) 178-184. [Back]
  78. S. Marini, P. Salvi, P. Nelli, R. Pesenti, M.Villa, M. Berrettoni, G. Zangari and Y. Kiros, Advanced alkaline water electrolysis, Electrochim. Acta 82 (2012) 384-391; K. Zeng and D.Zhang, Recent progress in alkaline water electrolysis for hydrogen production and applications, Progr. Energ. Combustion Science 36 (2010) 307-326; K. Zeng and D. Zhang, Corrigendum to “Recent progress in alkaline water electrolysis for hydrogen production and applications” [Progr Energ Combust Sci 36 (3) (2010) 307-326], Progr. Energ. Combustion Science 37 (2011) 631; D. M. F. Santos, C. A. C. Sequeira and J. L. Figueiredo, Hydrogen production by alkaline water electrolysis, Quim. Nova 36 (2013) 1176-1193; M. Wang, Z. Wang, X. Gong and Z. Guo, The intensification technologies to water electrolysis for hydrogen production – A review, Renewable Sustainable Energy Review, 29 (2014) 573-588. [Back]
  79. H. G. Kim, L. K. Kwac and J. D. Shin, Physical properties and flame characteristics of water electrolysis gas, Renewable Energy 42 (2012) 84-89; M. B. King, Water electrolyzers and the zero-point energy, Physics Procedia 20 (2011) 435-445. [Back]
  80. H. Ito, T. Maeda, A. Nakano and H. Takenaka, Properties of Nafion membranes under PEM water electrolysis conditions, International Journal of Hydrogen Energy, 36 (2011) 10527-10540. [Back, 2]
  81. H. M. S. Wedershoven, R. M. De Jonge, C. W. M. P. Sillen and S. J. D. van Stralen, Behaviour of oxygen bubbles during alkaline water electrolysis, International Journal of Heat. and Mass Transfer, 25 (1982) 1239-1243. [Back]
  82. M. Erko, D. Wallacher, G. H. Findenegg and O. Paris, Repeated sorption of water in SBA-15 investigated by means of in situ small-angle x-ray scattering, Journal of Physics: Condensed Matter, 24 (2012) 284112. [Back]
  83. G. D. Danilov, Changes of water colligative properties in distillation and filtration processes (2010). [Back, 2]
  84. A. Zeidler, P. S Salmon, H. E Fischer, J. C. Neuefeind, J M. Simonson and T. E Markland, Isotope effects in water as investigated by neutron diffraction and path integral molecular dynamics, Journal of Physics: Condensed Matter, 24 (2012) 284126. [Back, 2]
  85. A. Diehl, A. P. dos Santos and Y. Levin, Surface tension of an electrolyte–air interface: a Monte Carlo study, Journal of Physics: Condensed Matter, 24 (2012) 284115. [Back]
  86. R. J. Speedy and C. A. Angell, Isothermal compressibility of supercooled water and evidence for a thermodynamic singularity at -45 °C, Journal of Chemical Physics,65 (1976) 851-858. [Back]
  87. F. Caupin, A. Arvengas, K. Davitt, M. E. Azouzi, K. I. Shmulovich, C. Ramboz, D. A. Sessoms and A. D. Stroock, Exploring water and other liquids at negative pressure, Journal of Physics: Condensed Matter, 24 (2012) 284110. [Back]
  88. N. Giovambattista, T. Loerting, B. R. Lukanov and F. W. Starr, Interplay of the glass transition and the liquid-liquid phase transition in water. Science Reports, 2 (2012) 390. [Back]
  89. J. S. Hub, C. Caleman and D. van der Spoel, Organic molecules on the surface of water droplets – an energetic perspective, Physical Chemistry Chemical Physics, 14 (2012) 9537-9545. [Back, 2]
  90. J. A. Illingworth, A common source of error in pH measurements, Biochemical Journal, 195 (1981) 259-262. [Back]
  91. J. G. Nørby, The origin and the meaning of the little p in pH, Trends Biochem. Science 25 (2000) 36-37. [Back]
  92. M. D. A. Saldaña, V. H. Alvarez and A. Haldar, Solubility and physical properties of sugars in pressurized water, Journal of Chemical Thermodynamics, 55 (2012) 115-123. [Back]
  93. A. Panuszko, P. Bruzdziak, J. Zielkiewicz, D. Wyrzykowski and J. Stangret, Effects of urea and trimethylamine-N-oxide on the properties of water and the secondary structure of hen egg white lysozyme, Journal of Physical Chemistry B 113 (2009) 14797-14809. [Back]
  94. J. T. Titantah and M. Karttunen, Long-time correlations and hydrophobe-modified hydrogen-bonding dynamics in hydrophobic hydration, Journal of the American Chemical Society, 134 (2012) 9362-9368. [Back]
  95. C. McBride, E. G. Noya, J. L. Aragones, M. M. Conde and C. Vega, The phase diagram of water from quantum simulations, Physical Chemistry Chemical Physics, 14 (2012) 10140-10146; arXiv:1205.5181v1 [cond-mat.stat-mech] 23 May 2012. [Back]
  96. A. De Ninno and A. C. Castellano, On the effect of weak magnetic field on solutions of glutamic acid: the function of water, Journal of Physics: Conference Series, 329 (2011) 012025. [Back, 2]
  97. X. Shen, Increased dielectric constant in the water treated by extremely low frequency electromagnetic field and its possible biological implication, Journal of Physics: Conference Series, 329 (2011) 012019. [Back]
  98. B. Vybíral, Autothixotropy of water and its possible importance for the cytoskeletal structures,Journal of Physics: Conference Series, 329 (2011) 012004; N. Verdel, I. Jerman and P. Bukovec, The “Autothixotropic” phenomenon of water and its role in proton transfer, International Journal of Molecular Sciences, 12 (2011) 7481-7494; N. Verdel and P. Bukovec, Possible further evidence for the thixotropic phenomenon of water, Entropy 2014, 16, 2146-2160; I. L. Cameron, Change in physical properties of motionally unperturbed dilute aqueous solutions, WATER, 9 (2018) 109-115, doi: 10.14294/WATER.2018.1. [Back, 2, 3]
  99. A. Nilsson, C. Huang and L. G. M. Pettersson, Fluctuations in ambient water, Journal of Molecular Liquids, 176 (2012) 2-16. [Back, 2]
  100. D. Cohen-Tanugi and J. C. Grossman, Water desalination across nanoporous graphene, Nano Letters, 12 (2012) 3602-3608. [Back] [Back to Top to top of page]



Home | Site Index | Site Map | Search | LSBU | Top


This page was established in 2012 and last updated by Martin Chaplin on 1 June, 2019

Creative Commons License
This work is licensed under a Creative Commons Attribution
-Noncommercial-No Derivative Works 2.0 UK: England & Wales License