Water site headerMasthead Island, Great Barrier Reef Print-me keygo to Water Visitor Book contributions
Go to my page Water Structure and Science

Water Structure and Science References 1801 -> 1900


  1. M. Sakairi, Water-cluster-detecting breath sensor and applications in cars for detecting drunk or drowsy driving, IEEE Sensors J. 12 (2012) 1078-1083. [Back]
  2. W. Wagner and A. Pruss, The IAPWS Formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use, J. Phys. Chem. Ref. Data, 31 (2002) 387-535. [Back]
  3. J. A. Goff and S. Gratch, Low-pressure properties of water from -160 to 212°F, Trans. Am. Soc. Heat. Vent. Eng. (1946) 95-122. [Back]
  4. M. Banno, K. Ohta and K. Tominaga, Vibrational dynamics of acetate in D2O studied by infrared pump–probe spectroscopy, Phys. Chem. Chem. Phys. 14 (2012) 6359-6366. [Back]
  5. M. Jana and S. Bandyopadhyay, Conformational flexibility of a protein–carbohydrate complex and the structure and ordering of surrounding water, Phys. Chem. Chem. Phys. 14 (2012) 6628-6638. [Back]
  6. M. F. Chaplin, Fibre and water binding. Proc. Nutr. Soc. 62 (2003) 223-227; (unfortunately this reference contains references to liters rather than milliliters throughout). [Back]
  7. F. M. Floris, Excess densities and equimolar surfaces for spherical cavities in water, J. Chem. Phys. 126 (2007) 074505; F. M. Floris, Note: Volume errors and equimolar surfaces, J. Chem. Phys. 136 (2012) 116102. [Back]
  8. M. M. Rakorĉević, The genetic code as a Golden mean determined system, BioSystems 46 (1998) 283-291. [Back]
  9. C. Q. Sun, X. Zhang and W. Zheng, The hidden force opposing ice compression, Chem. Sci. 3 (2012) 1455-1460. [Back, 2]
  10. Y. Wang, H. Liu, J. Lv, L. Zhu, H. Wang and Y. Ma, High pressure partially ionic phase of water ice, Nature Commun. 2 (2011) 563. [Back]
  11. M. Hishida and K. Tanaka, Long-range hydration effect of lipid membrane studied by terahertz time-domain spectroscopy, Phys Rev Lett. 106 (2011) 158102. [Back]
  12. C. Vogt, K. Laihem and C. Wiebusch, Speed of sound in bubble-free ice, J. Acoust. Soc. Am. 124 (2008)3613-3618. [Back]
  13. A. Schiraldi, D. Fessas and M. Signorelli, Water activity in biological systems – A review, Pol. J. Food Nutr. Sci. 62 (2012) 5-13. [Back]
  14. W. Hujo, B. S. Jabes, K. V. Rana, C. Chakravarty and V. Molinero,The rise and fall of anomalies in tetrahedral liquids J. Stat. Phys. 145 (2011) 293-312; http://arxiv.org/abs/1107.5623; B S. Jabes, D. Nayar, D. Dhabal, V. Molinero and C. Chakravarty, Water and other tetrahedral liquids: order, anomalies and solvation, J. Phys.: Condens. Matter 24 (2012) 284116. [Back]
  15. M. D. Torres, R. Moreira, F. Chenlo, and M. J. Vázquez, Water adsorption isotherms of carboxymethyl cellulose, guar, locust bean, tragacanth and xanthan gums, Carbohydr. Polymers 89 (2012) 592-598.[Back]
  16. Z. Zhang, L. Piatkowski, H. J. Bakker and M. Bonn, Ultrafast vibrational energy transfer at the water/air interface revealed by two-dimensional surface vibrational spectroscopy, Nature Chem. 3 (2011) 888-893. [Back]
  17. X. Ma, P. Deng, X. Wang, C. Zhang and X. Hou, Direct determination of deuterium of wide concentration range in water by nuclear magnetic resonance, Talanta 97 (2012) 450-455. [Back]
  18. M. Ji, K. Umemoto, C.-Z. Wang, K.-M. Ho and R. M. Wentzcovitch, New ultrahigh pressure phases of H2O ice predicted using an adaptive genetic algorithm, (2011) arXiv:1108.4164v1 [cond-mat.mtrl-sci] 21 Aug 2011; A. Hermann, N. W. Ashcroft and R. Hoffmann, high-pressure ices, PNAS 109 (2012) 745-750. [Back]
  19. B. Pamuk, J. M. Soler, R. Ramírez, C. P. Herrero, P. W. Stephens, P. B. Allen and M.-V. Fernández-Serra, Anomalous nuclear quantum effects in ice, Phys. Rev. Lett. 108 (2012) 193003; arXiv:1111.4870v3 [cond-mat.mtrl-sci] 20 Feb 2012. [Back]
  20. A. D. Fortes, I. G. Wood, D. Grigoriev, M. Alfredsson, S. Kipfstuhl, K. S. Knight and R. I. Smith, No evidence for large-scale proton ordering in Antarctic ice from powder neutron diffraction, J. Chem. Phys. 120 (2004) 11376. [Back]
  21. L. G. Dowell and A. P. Rinfret, Low temperature forms of ice as studied by X-ray diffraction, Nature 188 (1960) 1144-1148. [Back]
  22. G. P. Arnold, E. D. Finch, S. W. Rabideau and R. G. Wenzel , Neutron-diffraction study of ice polymorphs. III. Ice Ic, J. Chem. Phys. 49 (1968) 4365-4369. [Back]
  23. B. Kamb and A. Prakash, Structure of ice III, Acta Crystallogr. B - Struct. Cryst. . Crystal Chem. 24 (1968) 1317-1327. [Back]
  24. B. Kamb, Structure of ice VI , Science 150 (1965) 205-209. [Back]
  25. N. F. Bunkin, B. W. Ninham, V. A. Babenko, N. V. Suyazov and A. A. Sychev, Role of dissolved gas in optical breakdown of water: Differences between effects due to helium and other gases, J. Phys. Chem. B 114 (2010) 7743-7752. [Back, 2, 3] [Back to Top to top of page]
  26. N. F. Bunkin, B. W. Ninham, P. S. Ignatiev, V. A. Kozlov, A. V. Shkirin and A. V. Starosvetskij, Long-living nanobubbles of dissolved gas in aqueous solutions of salts and erythrocyte suspensions, J. Biophotonics 4 (2011) 150-164. [Back]
  27. P. Lo Nostro and B. W. Ninham, Hofmeister phenomena: an update on ion specificity in biology, Chem. Rev. 112 (2012) 2286-2322. [Back]
  28. A. Bankura and A. Chandra, Hydration structure and dynamics of a hydroxide ion in water clusters of varying size and temperature: Quantum chemical and ab initio molecular dynamics studies, Chem. Phys. 400 (2012) 154-164. [Back, 2]
  29. M. Huš and T. Urbic Strength of hydrogen bonds of water depends on local environment, J. Chem. Phys. 136 (2012) 144305; see also S. Iwata, Analysis of hydrogen bond energies and hydrogen bonded networks in water clusters (H2O)20 and (H2O)25 using the charge-transfer and dispersion terms, Phys.Chem.Chem.Phys. 16 (2014) 11310-11317. [Back]
  30. M. H. Abraham and W. E. Acree Jr., The hydrogen bond properties of water from 273 K to 573 K; equations
    for the prediction of gas-water partition coefficients, Phys. Chem. Chem. Phys. 14 (2012) 7433-7440. [Back]
  31. M. Eigen, Proton transfer, acid-base catalysis, and enzymatic hydrolysis. Part 1: elementary processes. Angew. Chem. 75 (1963) 489: Angew. Chem. Int. Ed 3 (1964) 1-19. [Back]
  32. O. Haida, T. Matsuo, H. Suga and S. Seki, Calorimetric study of the glassy state X. Enthalpy relaxation at the glass-transition temperature of hexagonal ice, J. Chem. Thermodynamics 6 (1974) 815-825. [Back]
  33. N. H. Fletcher, In The Chemical Physics of Ice, (Cambridge University Press; 1970) pp. 54, http://dx.doi.org/10.1017/CBO9780511735639.005. [Back]
  34. S. C. Flores, J. Kherb, N. Konelick, X. Chen and P.l S. Cremer, The effects of Hofmeister cations at negatively charged hydrophilic surfaces, J. Phys. Chem. C 116 (2012) 5730-5734. [Back]
  35. M. S. Shell, P. G. Debenedetti and A. Z. Panagiotopoulos, Molecular structural order and anomalies in liquid silica
    Phys. Rev. E 66 (2002) 011202. [Back]
  36. J. Stähler, C. Gahl and M. Wolf, Dynamics and reactivity of trapped electrons on supported ice crystallites, Acc. Chem. Res. 45 (2012) 131-138. [Back]
  37. C. Knight and G. A. Voth, The curious case of the hydrated proton, Acc. Chem. Res. 45 (2012) 101-109. [Back]
  38. D. Thirumalai, G. Reddy, Role of water in protein aggregation and amyloid polymorphism, Acc. Chem. Res. 45 (2012) 83-92. [Back]
  39. N. Agmon, Liquid water: from symmetry distortions to diffusive motion, Acc. Chem. Res. 45 (2012) 63-73. [Back]
  40. R. S. Smith, N. G. Petrik, G. A. Kimmel and B. D. Kay, Thermal and nonthermal physiochemical processes in nanoscale films of amorphous solid water, Acc. Chem. Res. 45 (2012) 33-42. [Back, 2]
  41. O. Marsalek, F. Uhlig, J. Vandevondele and P. Jungwirth, Structure, dynamics, and reactivity of hydrated electrons by ab initio molecular dynamics, Acc. Chem. Res. 45 (2012) 23-32. [Back, 2]
  42. L. R. Matija, R. N. Tsenkova, M. Miyazaki, K. Bamba and J. S. Muncan, Aquagrams: Water spectral pattern as characterization of hydrogenated nanomaterial, Faculty Mech. Eng. (Belgrade) Trans. 40 (2012) 51-56. [Back]
  43. D. P. G. Hamon and G. F. Taylor, A synthesis of tetracyclo[5,3,1,12,6,04,9]dodecane (iceane), Australian J. Chem. 29 (1976) 1721-1734. [Back]
  44. L. A. Paquette, R. J. Ternansky, D. W. Balogh and G. Kentgen, Total synthesis of dodecahedrane, J. Am. Chem. Soc. 105 (1983) 5446-5450. [Back]
  45. A. N. Enyashin and A. L. Ivanovski, Atomic and electronic structures and stability of icosahedral nanodiamonds and onions, Phys. Solid State, 49 (2007) 392-397 (Fizika Tverdogo Tela, 49 (2007) 378-383). [Back]
  46. C. D. Latham and M. I. Heggie, Hypothetical C100 molecule and diamond-graphite interface: unstable and metastable states of carbon, Diamond Rel. Mater. 4 (1995) 528-531. [Back]
  47. L. Zeger and E. Kaxiras, Compact carbon clusters with tetrahedral bonding and icosahedral symmetry, Comp. Mater. Sci. 1 (1993) 403-410. [Back]
  48. C. Genty and G. Reversat, Isotopic analysis of tritiated water, Anal. Chem. 45 (1973) 1710-1715. [Back]
  49. J. Lee and S.-H. Kim, Water polygons in high-resolution protein crystal structures, Protein Sci. 18 (2009) 1370-1376. [Back]
  50. L. Van Sang, The relationship between the formation of clusters containing tetrahedral molecules and the dynamic and thermodynamic anomalies of cooled TIP4P/2005 water, J. Korean Phys.Soc. 69 (2016) 40-44. [Back] [Back to Top to top of page]
  51. X. Ma, B. Wigington and D. Bouchard, Fullerene C60: Surface energy and interfacial interactions in aqueous systems, Langmuir 26 (2010) 11886-11893. [Back]
  52. T. Loerting and J. Bernard, Aqueous carbonic acid (H2CO3), Chemphyschem 11 (2010) 2305-2309. A. L. Soli and R. H. Byrne, CO2 system hydration and dehydration kinetics and the equilibrium CO2/H2CO3 ratio in aqueous NaCl solution, Marine Chem. 78 (2002) 65-73. S. K. Lower, Carbonate equilibria in natural waters A Chem1 Reference Text (1999). [Back]
  53. M. Manciu and E. Ruckenstein, Ions near the air/water interface. II: Is the water/air interface acidic or basic? Predictions of a simple model, Colloids Surfaces A: Physicochem. Eng. Asp. 404 (2012) 93-100. [Back]
  54. J. L. Pérez-Díaz, M. A. Álvarez-Valenzuela and J. C. García-Prada, The effect of the partial pressure of water vapour on the surface tension of the liquid water-air interface, J. Colloid Interface Sci. 381 (2012) 180-2. [Back]
  55. Y.Katsir, Y. Shapira, Y. Mastai, R. Dimova and E. Ben-Jacob, Entropic effects and slow kinetics revealed in titrations of D2O-H2O solutions with different D/H ratios, J. Phys. Chem. B 114 (2010) 5755-5763. [Back]
  56. G. Lenormand, E. Millet, C. Y. Park, C. C. Hardin, J. P. Butler, N. I. Moldovan and J. J. Fredberg, Dynamics of the cytoskeleton: How much does water matter? Phys. Rev. E 83 (2011) 061918. [Back]
  57. G. A. Bottomley and R. L. Scott, Excess volumes for H20 +D20 liquid mixtures, Aust. J. Chem. 29 (1976) 427-428. [Back]
  58. Y. Mao and Y. Zhang, Thermal conductivity, shear viscosity and specific heat of rigid water models, Chem. Phys. Lett. 542 (2012) 37-41. [Back]
  59. E. A. Jagla, The interpretation of water anomalies in terms of core-softened models, Braz. J. Phys. 34 (2004) 17-23. [Back, 2, 3, 4]
  60. V. Holten, C. E. Bertrand, M. A. Anisimov and J. V. Sengers, Thermodynamic modeling of supercooled water, Technical Report prepared for the International Association for the Properties of Water and Steam (September 2011). [Back, 2]
  61. J. Black, The supposed effect of boiling upon water, in disposing it to freeze more readily, ascertained by experiments, Phil. Trans. 65 (1775) 124-128. [Back]
  62. P. Tremaine, K. Zhang, P. Bénézeth and C. Xiao, Ionization equilibria of acids and bases under hydrothermal conditions, in Aqueous systems at elevated temperatures and pressures: Physical chemistry in water, steam and hydrothermal solutions, ed. D. A. Palmer, R. Fernández-Prini and A. H. Harvey (Elsevier, Amsterdam, 2004) pp. 441-492. [Back]
  63. A. F. Peery, P. R. Barrett, D. Park, A. J. Rogers, J. A. Galanko, C. F. Martin and R. S. Sandle,r A high-fiber diet does not protect against asymptomatic diverticulosis Gastroenterology 142 (2012) 266-272. [Back]
  64. R. D. Heijtz, S. Wang, F. Anuar, Y. Qian, B. Björkholm, A. Samuelsson, M. L. Hibberd, H. Forssberg and S. Pettersson, Normal gut microbiota modulates brain development and behavior, PNAS 108 (2011) 3047-3052. [Back]
  65. D. W. Shoesmith and W. Lee, The ionization constant of heavy water (D2O) in the temperature range 298 to 523 K, Can. J. Chem. 54 (1976) 3553-3558. [Back]
  66. A. Perera, On the microscopic structure of liquid water, Mol. Phys. 109 (2011) 2433-2441; A. Perera, R. Mazighi and B. Kežíc. Fluctuations and micro-heterogeneity in aqueous mixtures, J. Chem. Phys.136 (2012) 174516 [Back, 2]
  67. J. Poater, M. Swart, l. F. Guerra and F. M. Bickelhaupt, Solvent effects on hydrogen bonds in Watson-Crick, mismatched, and modified DNA base pairs, Comput. Theor. Chem. 998 (2012) 57-63 [Back, 2]
  68. K. Johnson, M. Price-Gallagher, O. Mamer, A. Lesimple, C. Fletcher, Y. Chen, X.i Lu, M. Yamaguchi, and X.-C. Zhang, Water vapor: an extraordinary terahertz wave source under optical excitation, (2009)

    arXiv:0902.2024v1[physics.optics]. [Back]

  69. L. Yang, C. A. Tulk, D. D. Klug, I. L. Moudrakovski, C. I. Ratcliffe, J. A. Ripmeester, B. C. Chakoumakos, L. Ehm, C. D. Martin and J. B. Parise, Synthesis and characterization of a new structure of gas hydrate, PNAS 106 (2009) 6060-6064. [Back]
  70. S. Yoshioki, Identification of a mechanism of transformation of clathrate hydrate structures I to II or H, J. Mol. Graphics Modelling 37 (2012) 39-48. [Back]
  71. A. Jana, A. D. Jana, I. Bhoumick, T. Mistri, M. Dolai, K. K. Das, A. M. Panja and M. Ali, First crystallographic report on a novel 2D layer of water pentagons: L5(7) water motif enclathrating [Co(Cyclam)Cl2], Inorg. Chem. Comm. 24(2012) 157-161. [Back, 2]
  72. J. H. van 't Hoff, Die Rolle des osmotischen Druckes in der Analogie zwischen Lösungen und Gasen, Zeitschrift für Physikalische Chemie, 1 (1887) 481-508. translated and condensed in J. Membrane Sci. 100 (1995) 39-44. [Back]
  73. K. Alleva, O. Chara and G. Amodeo, Aquaporins: another piece in the osmotic puzzle, FEBS Letters 586 (2012) 2991-2999. [Back]
  74. J. M. Herbert and M. Head-Gordon, First-principles, quantum-mechanical simulations of electron solvation by a water cluster,PNAS. 103 (2006) 14282-14287. L. Turi, W.-S. Sheu and P. J. Rossky, Characterization of excess electrons in water-cluster anions by quantum simulations, Science 309 (2005) 914-917. [Back]
  75. M. Fleischmann and S. Pons, Electrochemically induced nuclear fusion of deuterium, J. Electroanal. Chem. 261 (1989) 301-308. [Back] [Back to Top to top of page]
  76. S. K. Mazloomi and N. Sulaiman, Influencing factors of water electrolysis electrical efficiency, Renewable and Sustainable Energy Reviews 16 (2012) 4257-4263; K. Mazloomi, N. Sulaiman and H. Moayedi, Electrical efficiency of electrolytic hydrogen production, Int. J. Electrochem. Sci., 7 (2012) 3314-3326. [Back]
  77. M. J. T. C. van der Niet, N. Garcia-Araez, J. Hernández, J. M. Feliu, M. T.M. Koper, Water dissociation on well-defined platinum surfaces: The electrochemical perspective, Catal. Today 202 (2013) 105-113; M. Shen, N. Bennett, Y. Ding and K. Scott, A concise model for evaluating water electrolysis, Int. J. Hydrogen Energy 36 (2011) 14335-14341; J. Rossmeisl, A. Logadottir and J. K. Nørskov, Electrolysis of water on (oxidized) metal surfaces, Chem. Phys. 319 (2005) 178-184. [Back]
  78. S. Marini, P. Salvi, P. Nelli, R. Pesenti, M.Villa, M. Berrettoni, G. Zangari and Y. Kiros, Advanced alkaline water electrolysis, Electrochim. Acta 82 (2012) 384-391; K. Zeng and D.Zhang, Recent progress in alkaline water electrolysis for hydrogen production and applications, Progr. Energ. Combustion Sci. 36 (2010) 307-326; K. Zeng and D. Zhang, Corrigendum to “Recent progress in alkaline water electrolysis for hydrogen production and applications” [Progr Energ Combust Sci 36 (3) (2010) 307-326], Progr. Energ. Combustion Sci. 37 (2011) 631; D. M. F. Santos, C. A. C. Sequeira and J. L. Figueiredo, Hydrogen production by alkaline water electrolysis, Quim. Nova 36 (2013) 1176-1193; M. Wang, Z. Wang, X. Gong and Z. Guo, The intensification technologies to water electrolysis for hydrogen production – A review, Renewable Sustainable Energy Rev. 29 (2014) 573-588. [Back]
  79. H. G. Kim, L. K. Kwac and J. D. Shin, Physical properties and flame characteristics of water electrolysis gas, Renewable Energy 42 (2012) 84-89; M. B. King, Water electrolyzers and the zero-point energy, Physics Procedia 20 (2011) 435-445. [Back]
  80. H. Ito, T. Maeda, A. Nakano and H. Takenaka, Properties of Nafion membranes under PEM water electrolysis conditions, Int. J. Hydrogen Energy 36 (2011) 10527-10540. [Back, 2]
  81. H. M. S. Wedershoven, R. M. De Jonge, C. W. M. P. Sillen and S. J. D. van Stralen, Behaviour of oxygen bubbles during alkaline water electrolysis, Int. J. Heat. Mass Transfer. 25 (1982) 1239-1243. [Back]
  82. M. Erko, D. Wallacher, G. H. Findenegg and O. Paris, Repeated sorption of water in SBA-15 investigated by means of in situ small-angle x-ray scattering, J. Phys.: Condens. Matter 24 (2012) 284112. [Back]
  83. G. D. Danilov, Changes of water colligative properties in distillation and filtration processes (2010). [Back, 2]
  84. A. Zeidler, P. S Salmon, H. E Fischer, J. C. Neuefeind, J M. Simonson and T. E Markland, Isotope effects in water as investigated by neutron diffraction and path integral molecular dynamics, J. Phys.: Condens. Matter 24 (2012) 284126. [Back, 2]
  85. A. Diehl, A. P. dos Santos and Y. Levin, Surface tension of an electrolyte–air interface: a Monte Carlo study, J. Phys.: Condens. Matter 24 (2012) 284115. [Back]
  86. R. J. Speedy and C. A. Angell, Isothermal compressibility of supercooled water and evidence for a thermodynamic singularity at -45 °C, J. Chem. Phys. 65 (1976) 851-858. [Back]
  87. F. Caupin, A. Arvengas, K. Davitt, M. E. Azouzi, K. I. Shmulovich, C. Ramboz, D. A. Sessoms and A. D. Stroock, Exploring water and other liquids at negative pressure, J. Phys.: Condens. Matter 24 (2012) 284110. [Back]
  88. N. Giovambattista, T. Loerting, B. R. Lukanov and F. W. Starr, Interplay of the glass transition and the liquid-liquid phase transition in water. Sci. Rep. 2 (2012) 390. [Back]
  89. J. S. Hub, C. Caleman and D. van der Spoel, Organic molecules on the surface of water droplets – an energetic perspective, Phys. Chem. Chem. Phys. 14 (2012) 9537-9545. [Back, 2]
  90. J. A. Illingworth, A common source of error in pH measurements, Biochem. J. 195 (1981) 259-262. [Back]
  91. J. G. Nørby, The origin and the meaning of the little p in pH, Trends Biochem. Sci. 25 (2000) 36-37. [Back]
  92. M. D. A. Saldaña, V. H. Alvarez and A. Haldar, Solubility and physical properties of sugars in pressurized water, J. Chem. Thermodynamics 55 (2012) 115-123. [Back]
  93. A. Panuszko, P. Bruzdziak, J. Zielkiewicz, D. Wyrzykowski and J. Stangret, Effects of urea and trimethylamine-N-oxide on the properties of water and the secondary structure of hen egg white lysozyme, J. Phys. Chem. B 113 (2009) 14797-14809. [Back]
  94. J. T. Titantah and M. Karttunen, Long-time correlations and hydrophobe-modified hydrogen-bonding dynamics in hydrophobic hydration, J. Am. Chem. Soc. 134 (2012) 9362-9368. [Back]
  95. C. McBride, E. G. Noya, J. L. Aragones, M. M. Conde and C. Vega, The phase diagram of water from quantum simulations, Phys. Chem. Chem. Phys. 14 (2012) 10140-10146; arXiv:1205.5181v1 [cond-mat.stat-mech] 23 May 2012. [Back]
  96. A. De Ninno and A. C. Castellano, On the effect of weak magnetic field on solutions of glutamic acid: the function of water, J. Physics:Conference Ser. 329 (2011) 012025. [Back, 2]
  97. X. Shen, Increased dielectric constant in the water treated by extremely low frequency electromagnetic field and its possible biological implication, J. Physics:Conference Ser. 329 (2011) 012019. [Back]
  98. B. Vybíral, Autothixotropy of water and its possible importance for the cytoskeletal structures, J. Physics: Conference Ser. 329 (2011) 012004; N. Verdel, I. Jerman and P. Bukovec, The “Autothixotropic” phenomenon of water and its role in proton transfer, Int. J. Mol. Sci. 12 (2011) 7481-7494; N. Verdel and P. Bukovec, Possible further evidence for the thixotropic phenomenon of water, Entropy 2014, 16, 2146-2160. [Back, 2, 3]
  99. A. Nilsson, C. Huang and L. G. M. Pettersson, Fluctuations in ambient water, J. Mol. Liq. 176 (2012) 2-16. [Back, 2]
  100. D. Cohen-Tanugi and J. C. Grossman, Water desalination across nanoporous graphene, Nano Lett. 12 (2012) 3602-3608. [Back] [Back to Top to top of page]



Home | Site Index | Site Map | Search | LSBU | Top


This page was established in 2012 and last updated by Martin Chaplin on 15 August, 2017

Creative Commons License
This work is licensed under a Creative Commons Attribution
-Noncommercial-No Derivative Works 2.0 UK: England & Wales License