Water site headerMasthead Island, Great Barrier Reef Print-me keygo to Water Visitor Book contributions
Go to my page Water Structure and Science

Water Structure and Science References 101 - 200


  1. E. Espinosa, E. Molins, C. Lecomte, Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities, Chem. Phys. Lett. 285 (1998) 170-173. [Back]
  2. N. Agmon, Mechanism of hydroxide mobility, Chem. Phys. Lett. 319 (2000) 247-252. [Back, 2]
  3. M. F. Chaplin and C. Bucke, Enzyme technology (University Press, Cambridge, 1990) pp. 115-119. [Back]
  4. J. S. Baker and S. J. Judd, Magnetic amelioration of scale formation, Water Res. 30 (1996) 247-260. [Back]
  5. R. Gehr, Z. A. Zhai, J. A. Finch and R. Rao, Reduction of soluble mineral concentrations in CaSO4 saturated water using a magnetic-field, Water Res. 29 (1995) 933-940. [Back]
  6. S. Ozeki, C. Wakai and S. Ono, Is a magnetic effect on water-adsorption possible, J. Phys. Chem. 95 (1991) 10557-10559. [Back]
  7. J. M. D. Coey and S. Cass, Magnetic water treatment, J. Magn. Magn. Mater. 209 (2000) 71-74. [Back]
  8. K. Higashitani, J. Oshitani and N. Ohmura, Effects of magnetic field on water investigated with fluorescent probes, Colloids Surf., A 109 (1996) 167-173. [Back]
  9. K. W. Busch and M. A. Busch, Laboratory studies on magnetic water treatment and their relationship to a possible mechanism for scale reduction, Desalination 109 (1997) 131-148. [Back]
  10. M. Colic and D. Morse, The elusive mechanism of the magnetic 'memory' of water, Colloids Surf., A 154 (1999) 167-174. [Back, 2]
  11. H. Hayashi., Microwater, The natural solution (Water Institute, Tokyo, 1996). [Back, 2]
  12. F. Franks, Water: 2nd Edition A matrix of life, (Royal Society of Chemistry, Cambridge, 2000). [Back, 2a, 2b, 3, 4, 5]
  13. (a) G. Hulthe, G. Stenhagen, O. Wennerström and C-H. Ottosson, Water clusters studied by electrospray mass spectrometry, J. Chromatogr., A 777 (1997) 155-165. (b) M. Miyazaki, A. Fujii, T. Ebata and N. Mikami, Infrared spectroscopic evidence for protonated water clusters forming nanoscale cages, Science 304 (2004) 1134-1137. (c) J. W. Shin, N. I. Hammer, E. G. Diken, M. A. Johnson, R. S. Walters, T. D. Jaeger, M. A. Duncan, R. A. Christie and K. D. Jordan KD, Infrared signature of structures associated with the H+(H2O)n (n=6 to 27) clusters, Science 304 (2004) 1137-1140. (d) T. S. Zwier, The structure of protonated water clusters, Science 304 (2004) 1119-1120. [Back]
  14. A. Khan, Ab initio studies of (H2O)20H+ and (H2O)21H+ prismic, fused cubic and dodecahedral clusters: can H3O+ ion remain in cage cavity?, Chem. Phys. Lett. 319 (2000) 440-450. [Back]
  15. D. J. Wales and M. P. Hodges, Global minima of water clusters [H2O]n, n=<21, described by an empirical potential, Chem. Phys. Lett. 286 (1998) 65-72. [Back, 2, 3]
  16. R. B. Martin, Localized and spectroscopic orbitals: Squirrel ears on water, J. Chem. Educ. 65 (1988) 668-670. [Back]
  17. M. Laing, No rabbit ears on water, J. Chem. Educ. 64 (1987) 124-128. [Back]
  18. (a) F. F. Muguet, MCSCF vibrational spectra of the symmetric and asymmetric dihydronium cations, J. Mol. Structure (Theochem) 368 (1996) 173-196. (b) F. F. Muguet, Electronic excitation spectra of the symmetric and assymmetric dihydronium cations, ECCC-5 (1998) [Back]
  19. H. Nakayama, H. Yamaguchi, S. Sasaki and H. Shimizu, Pressure-temperature phase diagram of molecular crystal H2S by Raman spectroscopy, Physica B 219/220 (1996) 523-525. [Back, 2]
  20. M. Castro, Homeopathy. A theoretical framework and clinical application, J. Nurse-Midwif. 44 (1999) 280-290. [Back]
  21. (a) K. Linde, N. Clausius, G. Ramirez, D. Melchart, F. Eitel, L. V Hedges and W. B Jonas, Are the clinical effects of homeopathy placebo effects? A meta-analysis of placebo-controlled trials, Lancet 350 (1997) 834-843; J. P. Vandenbroucke, Homoeopathy trials: going nowhere, Lancet 350 (1997) 824; M. J. S. Langman, Homeopathy trials: reason for good ones but are they warranted, Lancet 350 (1997) 825. (b) K. Linde, M. Scholz, G. Ramirez, N. Clausius, D. Melchart, and W. B Jonas, Impact of study quality on outcome in placebo-controlled trials of homeopathy, J. Clin. Epidemiol. 52 (1999) 631-636. (c) H. Walach, Placebo and placebo effects – a concise review, Focus on Alternative and Complementary Therapies 8 (2003) 178-187. [Back]
  22. N. N. Fedyakin, Change in the structure of water during condensation in capillaries, Kolloid Zh. 24 (1962) 497-502; Colloiid J. USSR 24 (1962) 425-430; B. V. Derjaguin, Effect of lyophile surfaces on the properties of boundary liquid films, Disc. Faraday Soc. 42 (1966) 109-119; E. R. Lippincott, R. R. Stromberg, W. H. Grant and G. L. Cessac, Polywater Vibrational spectra indicate unique stable polymeric structure, Science 164 (1969) 1482-1497; the story is told in depth in the excellent book: F. Franks, Polywater, MIT press, 1981.. [Back]
  23. D. L. Rousseau and S. P. S. Porto, Polywater; polymer or artifact?, Science 167 (1970) 1715-1719; P. Barnes, I. Cherry, J. L. Finney and S. Petersen, Polywater and polypollutants, Nature 230 (1971) 31-33. [Back]
  24. S-Y Lo, Anomalous state of ice, Modern Phys. Lett. B 10 (1996) 909-919. [Back, 2]
  25. (a) S-Y Lo, A. Lo, L. W. Chong, L. Tianzhang, L. H. Hua and X. Geng, Physical properties of water with IE structures, Modern Phys. Lett. B 10 (1996) 921-930. (b) Y. Wang and J.-C. Li, Inelastic neutron scattering techniques and its application to IE water, in Proceedings of the First International Symposium on Physical, Chemical and Biological Properties of Stable Water (IE) Clusters, ed. S.-Y. Lo and B. Bonavida (World Scientific Publishing, Singapore, 1997) pp. 81-90; (c) S. Y. Lo, X. Geng and D. Gann, Evidence for the existence of stable-water-clusters at room temperature and normal pressure, Phys. Lett. A 373 (2009) 3872-3876; (d) F. Kožíšek, D. Auerbach, M. K. H. Gast and K. Lindner, Comment on: “Evidence for the existence of stable-water-clusters at room temperature and normal pressure” [Phys.Lett.A373(2009)3872] Phys. Lett. A 377 (2013) 2826-2827; (e) S.-Y. Lo, Reply to the Comment by F. Kozisck et al on “Evidence for the existence of stable-water-clusters at room temperature and normal pressure” [PhysicsLett.A373(2009)3872] Phys. Lett. A 377 (2013) 2828-2829. [Back, 2] [Back to Top to top of page]
  26. (a) M. Kakiuchi, Geochim. Cosmochim. Acta, Distribution of isotopic water molecules, H2O, HDO, and D2O, in vapor and liquid phases in pure water and aqueous solution systems, 64 (2000) 1485-1492. (b) M. Buzzacchi, E. Del Giudice, G. Preparata, Anomalies in H2O-D 2O mixtures: Evidence for the two-fluid structure of water, arXiv:cond-mat/9802117. [Back]
  27. W. A. P. Luck, The influence of ions on water structure and on aqueous systems, in Water and Ions in Biological Systems, eds. A. Pullman, V. Vasileui and L. Packer (Plenum: New York, 1985) 95-126. [Back]
  28. Y. Marcus, Ion properties (Marcel Dekker, Inc., New York, 1997). [Back]
  29. A. V. Gubskaya and P. G. Kusalik, The total molecular dipole moment for liquid water, J. Chem. Phys. 117 (2002) 5290-5302. [Back]
  30. S. Prahl, Optical absorption of water. Available at http://omlc.ogi.edu/spectra/water/index.html (Accessed 19 January 2001). The data combining low absorptions extracted from S. G. Warren, Optical-constants of ice from the ultraviolet to the microwave, Appl. Opt. 23 (1984) 1206-1225 (revised data, 1995); T. I. Quickenden and J. A. Irvin, J. Chem Phys. 72 (1980) 4416; H. Buiteveld, J. M. H. Hakvoort and M. Donze, SPIE Proceedings on Ocean Optics XII, edited by J. S. Jaffe, 2258 (1994) 174.  The low absorptions were used due to the UV and blue end spectrum being very sensitive to the purity of the water. The linear scale inset infrared spectrum uses data from [2573] . [Back]
  31. H. Tsubomura, A. Yamamoto, O. Matsuo and Y. Okada, The visible absorption spectrum of water, Proc. Japan Acad. 56Ser. B (1980) 403-407; C. L. Braun and S. N. Smirnov, Why is water blue, J. Chem. Educ. 70 (1993) 612-615. [Back]
  32. E. Davenas, F. Beauvais, J. Amara, M. Oberbaum, B. Robinzon, A. Miadonna, A. Tedeschi, B. Pomeranz, P. Fortner, P. Belon, J. Sainte-Laudy, P. Poltevin and J. Benveniste, Human basophil degranulation triggered by very dilute antiserum against IgE, Nature 333 (1988) 816-818; see also [1211b]. [Back, 2]
  33. J. Maddox, J. Randi and W. W. Stewart, 'High dilution' experiments a delusion, Nature 334 (1988) 287-290. [Back]
  34. J. Benveniste, J. Aissa and D. Guilonnet, The molecular signal is not functional in the absence of "informed" water, FASEB 13 (1999) A163. Y. Thomas, M. Schiff, L. Belkadi, P. Jurgens, L. Kahhak and J. Benveniste, Activation of human neutrophils by electronically transmitted phorbol–myristate acetate, Medical Hypotheses 54 (2000) 33-39. [Back]
  35. R. Buchner, J. Barthel and J. Stauber, The dielectric relaxation of water between 0° C and 35° C, Chem. Phys. Lett. 306 (1999) 57-63. [Back, 2]
  36. F. Bruge, M. Bernasconi.and M. Parrinello, Ab initio simulation of rotational dynamics of solvated ammonium ion in water, J. Am. Chem. Soc. 121 (1999) 10883-10888. [Back]
  37. P. Jenniskens, S. F. Banham, D. F.  Blake and M. R. S. McCoustra, Liquid water in the domain of cubic crystalline ice Ic, J. Chem. Phys. 107 (1997) 1232-1241. [Back, 2]
  38. P. L. Geissler, T. Van Voorhis and C. Dellago, Potential energy landscape for proton transfer in (H2O)3H+; comparison of density functional theory and wavefunction-based methods, Chem. Phys. Lett. 324 (2000) 149-155. [Back]
  39. K. D. Collins and M. W. Washabaugh, The Hofmeister effect and the behaviour of water at interfaces, Quart. Rev. Biophys., 18 (1985) 323-422. [Back,2]
  40. J. P. Devlin, C. Joyce and V. Buch, Infrared spectra and structures of large water clusters, J. Phys. Chem. A 104 (2000) 1974-1977. [Back]
  41. P. Williams, Clearing the hazy shades of the smallest aerosols, Physics@UMIST Research Newsletter (1997) Available at http://www.phy.umist.ac.uk/Research/research_NL/NewsLetter2/williams.html (accessed 19 January 2001). [Back]
  42. S. Woutersen and H. J. Bakker, Resonant intermolecular transfer of vibrational energy in liquid water, Nature 402 (1999) 507-509. [Back]
  43. B. Schneider, K. Patel and H. M. Berman, Hydration of the phosphate group in double-helical DNA, Biophys. J. 75 (1998) 2422-2434. [Back]
  44. P. Auffinger and E. Westhof, Water and ion binding around RNA and DNA (C,G) oligomers, J. Mol. Biol. 300 (2000) 1113-1131. [Back]
  45. V. P. Denisov, G. Carlström, K. Venu and B. Halle, Kinetics of DNA hydration, J. Mol. Biol. 268 (1997) 118-136. [Back]
  46. M. Feig and B. M. Pettitt, Modeling high-resolution hydration patterns in correlation with DNA sequence and conformation, J. Mol. Biol. 286 (1999) 1075-1095. [Back]
  47. M. -C. Bellissent-Funel, Hydration on protein dynamics and function, J. Mol. Liq. 84 (2000) 39-52. [Back]
  48. G. W. Robinson and C. H. Cho, Role of Hydration water in protein unfolding, Biophys. J. 77 (1999) 3311-3318. [Back]
  49. K. Mizuno, Y. Kimura, H. Morichika, Y. Nishimura, S. Shimada, S. Maeda, S. Imafuji and T. Ochi, Hydrophobic hydration of tert-butyl alcohol probed by NMR and IR, J. Mol. Liq. 85 (2000) 139-152. [Back]
  50. G. I. Makhtadze and P. l. Privalov, Contribution of hydration to protein folding thermodynamics I. The enthalpy of hydration, J. Mol. Biol. 232 (1993) 639-657. [Back, 2] [Back to Top to top of page]
  51. P. l. Privalov and G. I. Makhtadze, Contribution of hydration to protein folding thermodynamics II. The entropy and Gibbs energy of hydration, J. Mol. Biol. 232 (1993) 660-679. [Back, 2]
  52. D. P. Shelton, Collective molecular rotation in water and other simple liquids, Chem. Phys. Lett. 325 (2000) 513-516. [Back]
  53. G. E. Walrafen and Y-C. Chu, Nature of collagen-water hydration forces; a problem in water structure, Chem. Phys. 258 (2000) 427-446. [Back]
  54. A. K. Soper, The radial distribution functions of water and ice from 220 to 673 K and at pressures up to 400 MPa, Chem. Phys. 258 (2000) 121-137. [Back, 2, 3, 4]
  55. A. E. Aleshin, B. Stoffer, L. M. Firsov, B. Svensson and R. B. Honzatko, Glucoamylase-471 complexed with acarbose, Biochemistry 35 (1996) 8319-8328. Protein Data Bank, 1GAH [Back]
  56. T. H. Plumridge, G. Steele and R. D. Waigh, Geometry-based simulation of the hydration of small molecules, PhysChemComm. (2000) 8. [Back]
  57. D. T. Bowron, A. Filipponi, M. A. Roberts and J. L. Finney, Hydrophobic hydration and the formation of a clathrate hydrate,  Phys. Rev. Lett. 81 (1998) 4164-4167. [Back, 2]
  58. D. Auerbach, Supercooling and the Mpemba effect; when hot water freezes quicker than cold, Am. J. Phys. 63 (1995) 882-885; J. Walker, Hot water freezes faster than cold water. Why does it do so? Scientific American 237 (2) (1977) 246-257; J. D. Brownridge, A search for the Mpemba effect: When hot water freezes faster then cold water, arXiv:1003.3185v1 [physics.pop-ph] (2010). P. Chaddah, S. Dash, Kranti Kumar and A. Banerjee, Overtaking while approaching equilibrium. arXiv:1011.3598v1 [cond-mat.stat-mech] (2010); M. Vynnycky and S. Kimura, Can natural convection alone explain the Mpemba effect? Int.J. Heat Mass Transfer 80 (2015) 243-255; G. S. Kell; The freezing of hot and cold water, Am. J. Phys. 37 (1969) 564-565; S. Esposito, R. De Risi and L. Somma, Mpemba effect and phase transitions in the adiabatic cooling of water before freezing, Physica A 387 (2008) 757-763. [Back]
  59. T. Quickenden and A. Hanlon, The colours of water and ice, Chem. Br. 36 (2000) 37-39; Chem. Br. 37 (2001) 18. [Back]
  60. (a) C. J. T. de Grotthuss, Sur la décomposition de l'eau et des corps qu'elle tient en dissolution à l'aide de l'électricité galvanique (On the decomposition of water and of the bodies that it holds in solution by means of galvanic electricity). Ann. Chim. LVIII (1806) 54-74. (b) S. l. Cukierman, Et tu, Grotthuss! and other unfinished stories, Biochim. Biophys. Acta, Bioenerg. 1757 (2006) 876-885. [Back, 2]
  61. D. Marx, M. E. Tuckerman, J. Hutter and M. Parrinello, The nature of the hydrated excess proton in water, Nature 397 (1999) 601-604. [Back]
  62. H. Reichert, O. Klein, H. Dosch, M. Denk, V. Honklmäkl, T. Lippmann and G. Reiter, Observation of five-fold local symmetry in liquid lead, Nature 408 (2000) 839-841. [Back]
  63. S. T. Bramwell, Ferroelectric ice, Nature 397 (1999) 212-213. [Back]
  64. L. H. Lorenzen, Microclustered water, United States Patent 6,033,678 (2000). [Back]
  65. K. Johnson, "Water buckyballs" Chemical, catalytic and cosmic implications, Infinite Energy 6 (2000) 29-32. K. H. Johnson and B. Zhang, Stabilized water nanocluster-fuel emulsions designed through quantum chemistry, United States Patent 5,997,590 (1999). [Back, 2, 3]
  66. H. Sato, N. Matubayasi, M. Nakahara and F. Hirata, Which carbon oxide is more soluble? Ab initio study on carbon monoxide and dioxide in aqueous solution, Chem. Phys. Lett. 323 (2000) 257 - 262. [Back, 2]
  67. H. Kanno, K. Tomikawa and O. Mishima, Reply to the comment on "Raman spectra of low- and high-density amorphous ices" [Chem. Phys. Lett. 293 (1998) 412], Chem. Phys. Lett. 333 (2001) 324 - 325. [Back]
  68. S. J. Suresh and V. M. Naik, Hydrogen bond thermodynamic properties of water from dielectric constant data, J. Chem. Phys. 113 (2000) 9727-9732. [Back, 2]
  69. J. R. Errington and P. G. Debenedetti, Relationship between structural order and the anomalies of liquid water, Nature 409 (2001) 318-321. [Back, 2, 3]
  70. Y. Ikezoe, N. Hirota, J. Nakagawa and K. Kitazawa, Making water levitate, Nature 393 (1998) 749-750. [Back]
  71. B. Y. Zaslavsky, Aqueous two-phase partitioning, (Marcel Dekker, Inc., New York, 1995). [Back]
  72. M. Sasai, Spatiotemporal heterogeneity and energy landscape in liquid water, Physica A 285 (2000) 315-324. [Back]
  73. A. Khan, A liquid water model: Density variation from supercooled to superheated states, prediction of H-bonds, and temperature limits. J. Phys. Chem. 104 (2000) 11268-11274. [Back, 2]
  74. S. Rai, U.P. Singh, K. P. Singh and A. Singh, Germination responses of fungal spores to magnetically restructured water, Electro- Magnetobiol. 13 (1994) 237-246. [Back]
  75. H. Schober, M. M. Koza, A. Tölle, C. Masciovecchio, F. Sette and F. Fujara, Crystal-like high frequency phonons in the amorphous phases of solid water, Phys. Rev. Lett. 85 (2000) 4100-4103. [Back] [Back to Top to top of page]
  76. K. Kitazawa, Y. Ikezoe, H. Uetake and N. Hirota, Magnetic field effects on water, air and powders, Physica B 294-295 (2001) 709-714. [Back, 2]
  77. H. R. Zelsmann, Temperature dependence of the optical constants for liquid H2O and D2O in the far IR region, J. Mol. Structure 350 (1995) 95-114. [Back, 2]
  78. R. A Mayanovic, A. J. Anderson, W. A. Bassett an I-M Chou, Hydrogen bond breaking in aqueous solutions near the critical point, Chem. Phys. Lett. 336 (2001) 212-218. [Back, 2]
  79. G. Albiser, A. Lamiri and S. Premilat, The A-B transition: temperature and base composition effects on hydration of DNA, Int. J. Biol. Macromol. 28 (2001) 199-203. [Back]
  80. M. W. Mahoney and W. L. Jorgensen, A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions, J. Chem. Phys. 112 (2000) 8910-8922. [Back]
    (The original TIP3P and TIP4P papers are W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys. 79 (1983) 926-935 and W. L. Jorgensen and J. D. Madura, Temperature and size dependence for monte carlo simulations of TIP4P water, Mol. Phys. 56 (1985) 1381-1392, respectively.)
  81. K. Kiyohara, K. E. Gubbins and A. Z. Panagiotopoulos, Phase coexistence properties of polarizable water models, Mol. Phys. 94 (1998) 803-808. [Back]
  82. M. W. Mahoney and W. L. Jorgensen, Diffusion constant of the TIP5P model of liquid water, J. Chem. Phys. 114 (2001) 363-366. [Back]
  83. L. A. Baez and P. Clancy, Existence of a density maximum in extended simple point-charge water, J. Chem. Phys. 101 (1994) 9837-9840. [Back]
  84. I. M. Svishchev, P. G. Kusalik, J. Wang and R. J. Boyd, Polarizable point-charge model for water. Results under normal and extreme conditions, J. Chem. Phys. 105 (1996) 4742-4750. [Back]
  85. D. van der Spoel, P. J. van Maaren and H. J. C. Berendsen, A systematic study of water models for molecular simulation: Derivation of water models optimized for use with a reaction field, J. Chem. Phys. 108 (1998) 10220-10230. [Back]
  86. S. McDonald, L. Ojamäe and S. J. Singer, Graph theoretical generation and analysis of hydrogen-bonded structures with applications to the neutral and protonated water cube and dodecahedral clusters, J. Phys. Chem. A 102 (1998) 2824-2832. [Back]
  87. E. B. Starikov, K. Brasicke, E. W. Knapp. and W. Saenger, Negative solubility coefficient of methylated cyclodextrins in water: a theoretical study, Chem. Phys. Lett. 336 (2001) 504-510. [Back]
  88. G. S. Kell, Thermodynamic and transport properties of fluid water, in Water A comprehensive treatise, Vol. 1, Ed. F. Franks (Plenum Press, New York, 1972) pp. 363-412. [Back, 2]
  89. S. Woutersen, U. Emmerichs and H. J. Bakker, Femtosecond mid-IR pump-probe spectroscopy of liquid water: evidence for a two-component structure, Science 278 (1997) 658-660. [Back, 2]
  90. M. F. Kropman and H. J. Bakker, Dynamics of water molecules in aqueous solvation shells, Science 291 (2001) 2118-2120. [Back, 2, 3]
  91. P. L. Geissler, C. Dellago, D. Chandler, J. Hutter and M. Parrinello, Autoionization in liquid water, Science 291 (2001) 2121-2124. [Back]
  92. K. X. Zhou, G. W. Lu, Q. C. Zhou, J. H. Song, S. T. Jiang and H. R. Xia, Monte Carlo simulation of liquid water in a magnetic field, J. App. Phys. 88 (2000) 1802-1805. [Back, 2]
  93. J. W. Willard, Method of reducing the incidence of infectious diseases and relieving stress in livestock, United States Patent 4,059,691 (1977). [Back]
  94. A. Khan, Theoretical studies of NH4+(H2O)20 and NH3(H2O)20H+ clusters, Chem. Phys. Lett. 338 (2001) 201-207. [Back]
  95. H. Kanno, H. Yokoyama and Y. Yoshimura, A new interpretation of anomalous properties of water based on Stillinger's postulate, J. Phys. Chem. B 105 (2001) 2019-2026; F. H. Stillinger, Water revisited, Science 209 (1980) 451-457; F. H. Stllllnger and T. A. Weber, Inherent structure in water, J. Phys. Chem. 87 (1983) 2833-2840; G. E. Walrafen, , W.-H. Yang and Y. C. Chu, Raman evidence for the clathrate like structure of highly supercooled water, In: Supercooled liquids, Ed. J. T. Fourkas, D. Kivelson, U. Mohanty, K. A. Nelson (1997), ACS Symposium Series, Vol. 676, pp 287-308. [Back]
  96. G. Graziano, Comment on "The mechanism of hydrophobic solvation depends on solute radius" J. Phys. Chem. B 2000, 104, 1326. J. Phys. Chem. B 105 (2001) 2079-2081. [Back]
  97. S. W. Rick, Simulation of ice and liquid water over a range of temperatures using the fluctuating charge model, J. Chem. Phys. 114 (2001) 2276-2283. [Back]
  98. T. A. Halgren and W. Damm, Polarizable force fields, Curr. Opin. Struct. Biol. 11 (2001) 236–242. [Back]
  99. J. M. Sorenson, G. Hura, R. M. Glaeser and T. Head-Gordon, What can x-ray scattering tell us about the radial distribution functions of water? J. Chem. Phys. 113 (2000) 9149-9161. [Back, 2]
  100. D. D. Klug, C. A. Tulk, E. C. Svensson, C. K. Loong, Dynamics and structural details of amorphous phases of ice determined by incoherent inelastic neutron scattering,  Phys. Rev. Lett. 83 (1999) 2584-2587. [Back] [Back to Top to top of page]




Home | Site Index | Site Map | Search | LSBU | Top


This page was established in 2001 and last updated by Martin Chaplin on 15 August, 2017

Creative Commons License
This work is licensed under a Creative Commons Attribution
-Noncommercial-No Derivative Works 2.0 UK: England & Wales License