Water site headerMasthead Island, Great Barrier Reef Print-me keygo to Water Visitor Book contributions
Go to my page Water Structure and Science

Water Structure and Science References 1901 - 2000

 

  1. J. Pokorný, Electrodynamic activity of healthy and cancer cells, J. Phys.: Conf. Ser. 329 (2011) 012007; M. Plankar, I. Jerman and R. Krašovec, On the origin of cancer: Can we ignore coherence? Progr. Biophys. Mol. Biol. 106 (2011) 380-390. [Back]
  2. N. Lavoine, I. Desloges, A. Dufresne and J. Bras, Microfibrillated cellulose – Its barrier properties and applications in cellulosic materials: A review, Carbohydr. Polymers 90 (2012) 735-764. [Back]
  3. F. Bruni, R. Mancinelli and M. A. Ricci, How safe is to safely enter in the water no-man's land? J. Mol. Liq. 176 (2012) 39-43. [Back]
  4. V. I. Bhoi, S. Kumar and C. N. Murthy, The self-assembly and aqueous solubilization of [60]fullerene with disaccharides, Carbohydr. Res. 359 (2012) 120-127. [Back]
  5. M. Liu, J. K. Beattie and A. Gray-Weale, The surface relaxation of water J. Phys. Chem. B 116 (2012) 8981-8988; P. Ball, Getting under water's skin, Chem. World Oct (2012) 28. [Back, 2]
  6. J. M. Andric, G. V. Janjic, D. B. Ninkovic and S. D. Zaric, The influence of water molecule coordination to a metal ion on water hydrogen bonds, Phys. Chem. Chem. Phys. 14 ( 2012) 10896-10898. [Back]
  7. F. Bonnet, E. M. Lepicard, L. Cathrin, C. Letellier, F. Constant, N. Hawili and G. Friedlander, French children start their school day with a hydration deficit, Ann Nutr Metab. 60 (2012) 257-263; R. Fadda, G. Rapinett, D. Grathwohl, M. Parisi, R. Fanari, C. M. Calò and J. Schmitt, Effects of drinking supplementary water at school on cognitive performance in children, Appetite 59 (2012) 730-737. [Back]
  8. Z. Zhou,H. Zhao,and J. Han, Supercooling and crystallization of water under DC magnetic fields, CIESC J. 63 (2012) 1405-1408. [Back]
  9. H. Suzuki, Y. Matsuzaki, A. Muraoka and M. Tachikawa, Raman spectroscopy of optically levitated supercooled water droplet, J. Chem. Phys. 136 (2012) 234508. [Back, 2]
  10. T. D. Noakes, Commentary: role of hydration in health and exercise, Brit. Med. J. 344 (2012) e4171. [Back]
  11. S. Shahriari, C. M. Neves, M. G. Freire and J. A.Coutinho, Role of the Hofmeister series in the formation of ionic-liquid-based aqueous biphasic systems. J Phys Chem B. 116 (2012) 7252-7258; K. A. Kurnia, M. G. Freire and J. A. P. Coutinho, Effect of polyvalent ions in the formation of ionic-liquid-based aqueous biphasic systems, J. Phys. Chem. B 118(2014) 297-308. [Back]
  12. Y. Marcus, The standard partial molar volumes of ions in solution. Part 5. Ionic volumes in water at 125-200 °C, J. Phys. Chem. B 116 (2012) 7232-7239; D. P. Fernandez, A. R.H. Goodwin, E. W. Lemmon, J. M. H. Levelt Senger and R. C. Williams, A formulation for the static permittivity of water and steam at temperatures from 238 K to 873 K at pressures up to 1200 MPa, including derivatives and Debye-Huckel coefficients, J. Phys. Chem. Ref. Data 26 (1997) 1125-1166. [Back, 2]
  13. L. B. Sagle, K. Cimatu, V. A. Litosh, Y. Liu, S. C. Flores, X. Chen, B. Yu and P. S. Cremer, Methyl groups of trimethylamine N-oxide orient away from hydrophobic interfaces J. Am. Chem. Soc. 133 (2011) 18707-18712. [Back]
  14. K. B. Rembert, J. Paterová, J. Heyda, C. Hilty, P. Jungwirth and P. S. Cremer, Molecular mechanisms of ion-specific effects on proteins, J. Am. Chem. Soc. 134 (2012) 10039-10046. [Back]
  15. S. J. Suresh, K. Kapoor, S. Talwar and A. Rastogi, Internal structure of water around cations, J. Mol. Liq. 174 (2012) 135-142. [Back]
  16. K. G. Libbrecht, The physics of snow crystals, Rep. Prog. Phys. 68 (2005) 855-895; K. G. Libbrecht, An experimental apparatus for observing deterministic structure formation in plate-on-pedestal ice crystal growth, arXiv:1503.01019v1 [cond-mat.mtrl-sci] 3 Mar 2015. [Back]
  17. J. T. O’Brien and E. R. Williams, Effects of ions on hydrogen-bonding water networks in large aqueous nanodrops, J. Am. Chem. Soc. 134 (2012) 10228-10236. [Back]
  18. K. Mizuse and A. Fujii, Infrared spectroscopy of large protonated water clusters H+(H2O)20-50 cooled by inert gas attachment, Chem. Phys. 419 (2013) 2-7. [Back]
  19. A. S. Zatula, M. J. Ryding, P. U. Andersson and E. Uggerud, Proton mobility and stability ofwater clusters containing alkali metal ions, Int. J. Mass Spectrom. 330-332 (2012) 191-199. [Back]
  20. L. R. Winther, J. Qvist and B. Halle, Hydration and mobility of trehalose in aqueous solution, J. Phys. Chem. B 116 (2012) 9196-9207; M. Heyden, G. Schwaab, and M. Havenith, Comment on “Hydration and mobility of trehalose in aqueous solution”, J. Phys. Chem. B 118 (2014) 10802-10805; B. Halle, Reply to “Comment on Hydration and mobility of trehalose in aqueous solution’”, J. Phys. Chem. B 118 (2014) 10806-10812. [Back]
  21. M. Balázovic and B.Tomácik,The Mpemba effect, Shechtman’s quasicrystals and student exploration activities, Phys. Educ. 47 (2012) 568-573. [Back]
  22. E. Thormann, On understanding of the Hofmeister effect: how addition of salt alters the stability of temperature responsive polymers in aqueous solutions, RSC Advances 2 (2012) 8297-8305. [Back]
  23. A. R. Imre, U. K. Deiters, T. Kraska and I. Tiselj, The pseudocritical regions for supercritical water, Nuclear Eng. Design 252 (2012) 179-183. [Back]
  24. K. Kobayashi and H. Yasuda, Phase transition of ice Ic to ice XI under electron beam irradiation, Chem. Phys. Lett. 547 (2012) 9-12. [Back]
  25. Q. Sun, Raman spectroscopic study of the effects of dissolved NaCl on water structure, Vibrational Spectr. 62 (2012) 110-114. [Back] [Back to Top to top of page]
  26. I. U. Vakarelski, N. A. Patankar, J. O. Marston, D. Y. C. Chan and S. T. Thoroddsen, Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces, Nature 489 (2012) 274-277. [Back]
  27. C. A. Lozupone, J. I. Stombaugh, J. I. Gordon, J. K. Jansson and R. Knight, Diversity, stability and resilience of the human gut microbiota Nature 489 (2012) 220-230. [Back]
  28. S.V. Goryainov, A model of phase transitions in double-well Morse potential: Application to hydrogen bond, Physica B 407 (2012) 4233-4237. [Back]
  29. C. L. Liu, G. W. Hu, Y. G. Ye and Q. G. Meng, Dry water: a prospective material for methane storage via clathrate hydrate form Adv. Mater. Res. 399-401 (2011) 1473-1476. [Back]
  30. P. S. Salmon, J. W. E. Drewitt, D. A. J. Whittaker, A. Zeidler, K. Wezka, C. L. Bull, M. G. Tucker, M. C. Wilding, M. Guthrie and D. Marrocchelli, Density-driven structural transformations in network forming glasses: a high-pressure neutron diffraction study of GeO2 glass up to 17.5 GPa J. Phys.: Condens. Matter 24 (2012) 415102. [Back]
  31. C. C. Pradzynski, R. M. Forck, T. Zeuch, P. Slavíček and U. Buck, A fully size-resolved perspective on the crystallization of water clusters, Science 337 (2012) 1529-1532. [Back]
  32. T. Shimoaka, T. Hasegawa, K. Ohno and Y. Katsumoto, Correlation between the local OH stretching vibration wavenumber and the hydrogen bonding pattern of water in a condensed phase: Quantum chemical approach to analyze the broad OH band, J. Mol. Structure 1029 (2012) 209-216. [Back]
  33. M. Holz, S. R. Heil and A. Sacco, Temperature-dependent self-di†usion coefficients of water and six selected molecular liquids for calibration in accurate 1H NMR PFG measurements, Phys. Chem. Chem. Phys. 2 (2000) 4740-4742. [Back]
  34. N. S. Osborne, H. F. Stimson and D. C. Ginnings, Measurements of heat capacity and heat of vaporization of water in the range 0 degrees to 100 degrees C, J. Res. Natl. Bureau Standards 23 (1939) 197-260. [Back]
  35. R. C. Dougherty, Temperature and pressure dependence of hydrogen bond strength: A perturbation molecular orbital approach, J. Chem. Phys. 109 (1998) 7372-7378. [Back, 2]
  36. D. Fraenkel, Electrolytic nature of aqueous sulfuric acid. 1. Activity, J. Phys. Chem. B, 116 (2012) 11662-11677. [Back]
  37. R. M. Pope and E. S. Fry, Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements, App. Optics 36 (1997) 8710-8723. [Back]
  38. W. B. Holzapfel, Effect of pressure and temperature on the conductivity and ionic dissociation of water up to 100 kbar and 1000 °C, J. Chem. Phys. 50 (1969) 4424-4428;(b) L. G. Hepler and E. M. Woolley, Hydration effects and acid-base equilibria, In Ed. F. Franks, Water A Comprehensive treatise, Vol. 3 Aqueous solutions of simple electrolytes, (Plenum press. New York, 1973) pp 145-172. [Back]
  39. P. T. Kiss and A. Baranyai, Density maximum and polarizable models of water, J. Chem. Phys.137 (2012) 084506. [Back]
  40. J. Roche, J. A. Caro, D. R. Norberto, P. Barthe, C. Roumestand, J. L. Schlessman, A. E. Garcia, B García-Moreno E., and C. A. Royer, Cavities determine the pressure unfolding of proteins, PNAS 109 (2012) 6945-6950. [Back]
  41. B. C. Polander and B. A. Barry, A hydrogen-bonding network plays a catalytic role in photosynthetic oxygen evolution, PNAS 109 (2012) 6112-6117. [Back]
  42. P. S. Chikramane, A. K. Suresh, J. R. Bellar and S. G. Kane, Extreme homeopathic dilutions retain starting materials: A nanoparticulate perspective, Homeopathy 99 (2010) 231-242; P. S. Chikramane, D. Kalita, A. K. Suresh, S. G. Kane and J. R. Bellare, Why extreme dilutions reach non-zero asymptotes: A nanoparticulate hypothesis based on froth flotation, Langmuir 28 (2012) 15864-15875. [Back]
  43. M. R. Frank, E. Aarestad, H. P. Scott and V. B. Prakapenka, A comparison of ice VII formed in the H2O, NaCl-H2O, and CH3OH-H2O systems: Implications for H2O-rich planets, Physics Earth Planetary Interiors 215 (2013) 12-20. [Back]
  44. J. G. Davis, K. P. Gierszal, P. Wang and D. Ben-Amotz, Water structural transformation at molecular hydrophobic interfaces, Nature 491 (2012) ; H. J. Bakker, Water's response to the fear of water, Nature 491 (2012) 582-585. [Back]
  45. G. Pallares, M. A. Gonzalez, J. L. F. Abascal, C. Valeriani and F. Caupin, Equation of state for water and its line of density maxima down to -120 MPa, Phys.Chem.Chem.Phys. 18 (2016) 5896-5900. [Back]
  46. Y. Marcus, Volumes of aqueous hydrogen and hydroxide ions at 0 to 200 °C, J. Chem. Phys. 137 (2012 154501. [Back, 2, 3]
  47. S. Yamaguchi, A. Kundu, P. Sen and T. Tahara, Quantitative estimate of the water surface pH using heterodyne-detected electronic sum frequency generation, J. Chem. Phys. 137 (2012) 151101. [Back]
  48. V. M. Shatalov, A. E. Filippov and I. V. Noga, Bubbles induced fluctuations of some properties of aqueous solutions, Biophysics 57 (2012) 421-427. [Back]
  49. S.-P. Nie, C. Wang, S. W. Cui, Q. Wang, M.-Y. Xie and G. O. Phillips, A further amendment to the classical core structure of gum arabic (Acacia senegal), Food Hydrocolloids 31 (2013) 42-48. [Back]
  50. P. Needham, Hydrogen bonding: Homing in on a tricky chemical concept, Studies in History and Philosophy of Science 44 (2013) 51-65. [Back] [Back to Top to top of page]
  51. H. Mishra, S. Enami, R. J. Nielsen, L. A. Stewart, M. R. Hoffmann, W. A. Goddard III and A. J. Colussi, Brønsted basicity of the air–water interface, PNAS 109 (2012) 18679-18683; A. J. Colussi and S. Enami, Comment on “Surface acidity of water probed by free energy Calculation for trimethylamine protonation” J. Phys. Chem. C 118 (2014) 2894; Y. Tabe, N. Kikkawa, H. Takahashi and A. Morita, Reply to “Comment on ‘Surface acidity of water probed by free energy Calculation for trimethylamine protonation’” J. Phys. Chem. C 118 (2014) 2895. [Back]
  52. P. T. Kiss, P. Bertsyk and A. Baranyai, Testing recent charge-on-spring type polarizable water models. I. Melting temperature and ice properties, J. Chem. Phys. 137 (2012) 194102; P. T. Kiss and A. Baranyai, Testing the recent charge-on-spring type polarizable water models. II. Vapor-liquid equilibrium, J. Chem. Phys. 137 (2012) 194103. [Back]
  53. K.Amann-Winkel, F. Löw, P. H. Handle, W. Knoll, J. Peters, B. Geil, F. Fujar and T. Loerting, Limits of metastability in amorphous ices: the neutron scattering Debye–Waller factor, Phys. Chem. Chem. Phys. 14 (2012) 16386-16391; F. Löw, K. Amann-Winkel, B. Geil, T. Loerting, C. Wittich and F. Fujara, Limits of metastability in amorphous ices: 2H-NMR relaxation, Phys. Chem. Chem. Phys. 15 (2013) 576-580. [Back]
  54. R. Demichelis, P. Raiteri, J. D. Gale, D. Quigley and D. Gebauer, Stable prenucleation mineral clusters are liquid-like ionic polymers, Nature Commun. 2 (2011) 590. [Back]
  55. J. M. D. Coey, Magnetic water treatment – how might it work? Phil. Mag. 92 (2012) 3857-3865. [Back]
  56. M. Mella, Exploring unvisited regions to investigate solution properties: The backyard of H3O+ and its aggregates, Chem. Phys. Lett. 555 (2013) 51-56. [Back]
  57. S. Perrard, Y. Couder, E. Fort and L. Limat, Leidenfrost levitated liquid tori, Europhys. Lett. 100 (2012) 54006. [Back]
  58. K. A. Rubinson and C. W. Meuse, Deep hydration: Poly(ethylene glycol) Mw 2000-8000 Da probed by vibrational spectrometry and small-angle neutron scattering and assignment of ΔG° to individual water layers, Polymer 54 (2013) 709-723. [Back]
  59. C. G. Ferrara, O. Chara and J. R. Grigera, Aggregation of non-polar solutes in water at different pressures and temperatures: The role of hydrophobic interaction, J. Chem. Phys. 137 (2012) 135104. [Back]
  60. L. Jaeken and V. V. Matveev, Coherent behavior and the bound state of water and K+ imply another model of bioenergetics: negative entropy instead of high-energy bonds, Open Biochem. J. 6 (2012) 139-159. [Back]
  61. V. V. Brazhkin, A. G. Lyapin, V. N. Ryzhov, K. Trachenko, Yu. D. Fomin and E. N. Tsiok, Where is the supercritical fluid on the phase diagram?, Physics - Uspekhi 55 (2012) 1061-1079; V. V. Brazhkin and K. Trachenko, What separates a liquid from a gas? Physics Today 65 (2012) 68-69; V. V. Brazhkin, Yu. D. Fomin, A. G. Lyapin, V. N. Ryzhov and K. Trachenko, Two liquid states of matter: A dynamic line on a phase diagram, Phys. Rev. E 85 (2012) 031203; Yu. D. Fomin, V. N. Ryzhov, E. N. Tsiok and V. V. Brazhkin, Dynamical crossover line in supercritical water. Sci. Rep. 5 (2015) 14234. [ Back]
  62. V. E. Petrenko, D. L. Gurina, and M. L. Antipova, Structure of supercritical water: the concept of critical isotherm as a percolation threshold, Russian J. Phys. Chem. B, 6 (2012) 899-906; M. L. Antipova, D. L. Gurina, and V. E. Petrenko, Structure of hydrogen-bonded associates in supercritical water under low and high pressures, Russian J. Phys. Chem. A, 87 (2013) 449-453; G. Galli and D. Pan., A closer look at supercritical water, PNAS 110 (2013) 6250-6251. [Back]
  63. O. F. Nielsen, M. Bilde, and M. Frosch, Water activity, Spectroscopy 27 (2012) 565-569. [Back, 2]
  64. A. Mashaghi, P. Partovi-Azar, T. Jadidi, M. Anvari, S. P. Jand, N. Nafar, M. R. R. Tabar, P. Maass, H. J. Bakker and M. Bonn, Enhanced autoionization of water at phospholipid interfaces J. Phys. Chem. C , 117 (2013) 510-514. [Back]
  65. K. M. Lange and E. F. Aziz, The hydrogen bond of water from the perspective of soft X-ray spectroscopy, Chem. Asian J. 8 (2013) 318-327. [Back]
  66. E. Ruckenstein, Nano dispersions of bubbles and oil drops in water, Colloids Surfaces A: Physicochem. Eng. Aspects, 423 (2013) 112-114. [Back]
  67. J. T. O'Brien and E. R. Williams, Effects of ions on hydrogen-bonding water networks in large aqueous nanodrops  J. Am. Chem. Soc. 134 (2012) 10228-10236. [Back]
  68. V. D. Prajapati, G. K. Jani, N. G. Moradiya, N. P. Randeria and B. J. Nagar, Locust bean gum: A versatile biopolymer, Carbohydr. Polymers 94 (2013) 814-821. [Back]
  69. W. F. Kuhs and M. S. Lehmann, The structure of ice-Ih, Water Science Reviews 2 (Cambridge University Press: 1986) pp. 1-66; W. F. Kuhs and M. S. Lehmann, The structure of ice-Ih by neutron diffraction , J. Phys. Chem. 87 (1983) 4312-4313. [Back]
  70. F. Mallamace, C. Corsaro and H. E. Stanley, A singular thermodynamically consistent temperature at the origin of the anomalous behavior of liquid water, Sci. Rep. (Nature) 2 (2012) 993. [Back, 2]
  71. L. B. Skinner, C. Huang, D. Schlesinger, L. G. M. Pettersson, A. Nilsson and C. J. Benmore, Benchmark oxygen oxygen pair-distribution function of ambient water from x-ray diffraction measurements with a wide Q-range, J. Chem. Phys. 138 (2013) 074506. [Back]
  72. T. F. Burg, M. Godin, S. M. Knudsen, W. Shen, G. Carlson, J. S. Foster, K. Babcock and S. R. Manalis, Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature 446 (2007) 1066-1069; H. Kobayashi, S. Maeda, M. Kashiwa and T. Fujita, Measurement and identification of ultrafine bubbles by resonant mass measurement method, Int. Conf. Optical Particle Characterization (OPC 2014), ed. N. Aya, N. Iki, T. Shimura and T. Shirai, Proc. of SPIE 9232 (2014) 92320S doi: 10.1117/12.2064811. [Back, 2]
  73. J. H. Weijs and D. Lohse, Why surface nanobubbles live for hours, Phys. Rev. Lett. 110 (2013) 054501. [Back, 2]
  74. J. B. Cumming, Temperature dependence of light absorption by water, Nuclear Instrum. Meth. Phys. Res. A, 713 (2013) 1-4; arXiv:1301.1984 [cond-mat.mtrl-sci]. [Back]
  75. N. Verdel, I. Jerma, R. Krasovec, P. Bukovec and M. Zupancic, Possible time-dependent effect of ions and hydrophilic surfaces on the electrical conductivity of aqueous solutions, Int. J. Mol. Sci.13 (2012) 4048-4068. [Back] [Back to Top to top of page]
  76. J. D. Cox, Phase relationships in the pyridine series. Part II. The miscibility of some pyridine homologues
    with deuterium oxide. J. Chem. Soc. (1952) 4606-4608; G. Jancsó, H2O-D2O solvent isotope effect on excess molar volumes of 3-methylpyridine solutions, J. Solution Chem. 35 (2006) 991-1005. [Back]
  77. (a) M. Yu. Tretyakov, E. A. Serov, M. A. Koshelev, V.V. Parshin and A. F. Krupnov, Water dimer rotationally resolved millimeter-wave spectrum observation at room temperature, Phys. Rev. Lett 110 (2013) 093001; (b) R. J. Saykally, Viewpoint on: M. Yu. Tretyakov, E. A. Serov, M. A. Koshelev, V.V. Parshin and A. F. Krupnov, Water dimer rotationally resolved millimeter-wave spectrum observation at room temperature, Phys. Rev. Lett 110 (2013) 093001, Physics 6 (2013) 22. [Back]
  78. M. Carmo, D. L. Fritz, J. Mergel and D. Stolten, A comprehensive review on PEM water electrolysis, Int. J. Hydrogen Energy 38 (2013) 4901-4934. [Back]
  79. T. D. Kühne and R. Z. Khaliullin, Electronic signature of the instantaneous asymmetry in the first coordination shell of liquid water, Nature Commun. 4 (2013) 1450 | doi: 10.1038/ncomms2459. [Back]
  80. Q. Sun, Local statistical interpretation for water structure, Chem. Phys. Lett. 568-569 (2013) 90-94. [Back, 2]
  81. Y. Marcus, Individual ionic surface tension increments in aqueous solutions Langmuir 29 (2013) 2881-2888; Y. Marcus, Specific ion effects on the surface tension and surface potential of aqueous electrolytes , Curr. Opin. Colloid & Interface Sci.23 (2016) 94-99. [Back, 2]
  82. F. Mallamace, C. Corsaro and H. E. Stanley, Possible relation of water structural relaxation to water anomalies, PNAS 110 (2013) 4899-4904. [Back]
  83. J. W. Biddle, V. Holten, J. V. Sengers and M. A. Anisimov, Thermal conductivity of supercooled water, Phys. Rev. E 87 (2013) 042302; arXiv: 1302.6280. [Back]
  84. A. A. Volkov, V. G. Artemov and A. V. Pronin, Proton electrodynamics in liquid water, (2013) arXiv:1302.5048v1; V. G. Artemov, A. A. Volkov, N. N. Sysoev and A. A. Volkov, Autoionization of water: does it really occur? (2015) arxiv.org/abs/1508.00126; A. A. Volkov, V. G. Artemov, A. A. Volkov and N. N. Sysoev, Diffusion-oscillatory dynamics in liquid water on data of dielectric spectroscopy, (2016) arxiv.org/pdf/1606.06023v1. [Back]
  85. D. J. Anick, Atypical water lattices and their possible relevance to the amorphous ices: A density functional study, AIP Advances 3 (2013) 042119. [Back]
  86. C.-W. Yang, Y.-H. Lu and I.-S. Hwang, Imaging surface nanobubbles at graphite–water interfaces with different atomic force microscopy modes, J. Phys.: Condens. Matter 25 (2013) 184010; W. Walczyk, P. M Schön and H. Schönherr, The effect of PeakForce tapping mode AFM imaging on the apparent shape of surface nanobubbles, J. Phys.: Condens. Matter 25 (2013) 184005. [Back]
  87. S. Wang, M. Liu and Y. Dong, Understanding the stability of surface nanobubbles, J. Phys.: Condens. Matter 25 (2013) 184007. [Back, 2]
  88. A. Maali and B. Bhushan, Nanobubbles and their role in slip and drag, J. Phys.: Condens. Matter 25 (2013) 184003. [Back]
  89. V. S. J. Craig, Very small bubbles at surfaces—the nanobubble puzzle, Soft Matter 7 (2011) 40-48. [Back]
  90. F. Takeuchi, M. Hiratsuka, R. Ohmura, S. Alavi, A. K. Sum and K. Yasuoka, Water proton configurations in structures I, II, and H clathrate hydrate unit cells, J. Chem. Phys. 138 (2013) 124504. [Back]
  91. S.-P. Nie, C. Wang, S. W. Cui, Q. Wang, M.-Y. Xie and G. O. Phillips, The core carbohydrate structure of Acacia seyal var. seyal (Gum arabic), Food Hydrocolloids 32 (2013) 221-227. [Back]
  92. H. Torii, Intermolecular electron density modulations in water and their effects on the far-infrared spectral profiles at 6 THz, J. Phys. Chem. B 115 (2011) 6636-6643. [Back]
  93. H. Torii, Extended nature of the molecular dipole of hydrogen-bonded water, J. Phys. Chem. A 117 (2013) 2044-2051. [Back, 2]
  94. H. Bian, J. Li, Q. Zhang, H. Chen, W. Zhuang, Y. Q. Gao and J. Zheng, Ion segregation in aqueous solutions, J. Phys. Chem. B , 116 (2012) 14426-14432. [Back]
  95. A. Fujii and K. Mizuse, Infrared spectroscopic studies on hydrogen-bonded water networks in gas phase clusters, Int. Rev. Phys. Chem. 32 (2013) 266-307. [Back]
  96. A. De Ninno, A. C. Castellano and E. Del Giudice, The supramolecular structure of liquid water and quantum coherent processes in biology, J. Phys.: Conf. Ser. 442 (2013) 012031. [Back]
  97. V. Tychinsky, The metabolic component of cellular refractivity and its importance for optical cytometry. J Biophotonics 8-9 (2009) 494-504. [Back]
  98. S. E. Cross, Y-S. Jin, J. Rao and J. K. Gimzewski, Nanomechanical analysis of cells from cancer patientsx, Nature Nanotech. 2 (2007) 780-783. [Back]
  99. W. Yu, P. E. M. Lopes, B. Roux, and A.r D. MacKerell, Jr.Six-site polarizable model of water based on the classical Drude oscillator, J. Chem. Phys.138 (2013) 034508. [Back]
  100. N. N. Smirnova, T. A. Bykova, K. Van Durme and B. Van Mele,Thermodynamic properties of deuterium oxide in the temperature range from 6 to 350 K, J. Chem. Thermodyn. 38 (2006) 879-883. [Back] [Back to Top to top of page]

 

 

Home | Site Index | Site Map | Search | LSBU | Top

 

This page was established in 2012 and last updated by Martin Chaplin on 15 August, 2017


Creative Commons License
This work is licensed under a Creative Commons Attribution
-Noncommercial-No Derivative Works 2.0 UK: England & Wales License