Water site headerMasthead Island, Great Barrier Reef Print-me keygo to Water Visitor Book contributions
Go to my page Water Structure and Science

Water Structure and Science References 2001 -> 2100

 

  1. P. Ben Ishai, E. Mamontov, J. D. Nickels and A. P. Sokolov, Influence of ions on water diffusion—A neutron scattering study, J. Phys. Chem. B 117 (2013) 7724-7728. [Back]
  2. S. Mondal, J. A. Martinson, S. Ghosh, R. Watson and K. Pahan, Protection of Tregs, suppression of Th1 and Th17 cells, and amelioration of experimental allergic encephalomyelitis by a physically-modified saline, PLOS ONE 7(12) (2012) e51869. [Back, 2]
  3. M. Yang and J. L. Skinner, Signatures of coherent vibrational energy transfer in IR and Raman line shapes for liquid water. Phys. Chem. Chem. Phys. 12 (2010) 982-991. [Back]
  4. C. Q. Sun, X. Zhang, J. Zhou, Y. Huang, Y. Zhou and W. Zheng, Density, elasticity, and stability anomalies of water molecules with fewer than four neighbors, J. Phys. Chem. Lett. 4 (2013) 2565-2570; X. Zhang, Y. Huang, Z. Ma, Y. Zhou, W. Zheng, J. Zhou and C. Q. Sun, A common supersolid skin covering both water and ice, 16 Phys. Chem. Chem. Phys.(2014) 22987-22994. [Back, 2]
  5. Y. Maruyama and Y. Harano, Does water drive protien folding? Chem. Phys. Lett. 581 (2013) 85-90. [Back]
  6. V. A. Parsegian and T. Zemb, Hydration forces: Observations, explanations, expectations, questions, Curr. Opin. Colloid Interface Sci. 16 (2011) 618-624; D. C. Rau, B. Lee and V. A. Parsegian, Measurement of the repulsive force between polyelectrolyte molecules in ionic solution: Hydration forces between parallel DNA double helices, PNAS 81 (1984) 2621-2625. [Back, 2]
  7. I. Janika and G. N. R. Tripathi, The nature of the superoxide radical anion in water, J. Chem. Phys. 139 (2013) 014302. [Back]
  8. Y. Shi and T. L. Beck, Length scales and interfacial potentials in ion hydration, J. Chem. Phys. 139 (2013) 044504. [Back]
  9. H. G. Baumgärtel and H. W. Zimmermann, The structure of supercooled water and the mechanism of homogeneous nucleation of ice Ih. Zeit. Physik. Chemie 227 (2013) 955-981. [Back]
  10. T. T. Duignan, D. F. Parsons and B. W. Ninham, A continuum model of solvation energies including electrostatic, dispersion, and cavity contributions, J. Phys. Chem. B 117 (2013) 9421-9429. [Back]
  11. G. Garcetti, Water is Key – Photo Essay, J. Cleaner Production 60 (2013) 216-224. [Back]
  12. Y. Wang, B. Zhang, Z. Gong, K. Gao, Y. Ou and J. Zhang, The effect of a static magnetic field on the hydrogen bonding in water using frictional experiments, J. Mol. Structure 1052 (2013) 102-104. [Back]
  13. P. Attard, The stability of nanobubbles, Eur. Phys. J. Special Topics (2013) doi: 10.1140/epjst/e2013-01817-0. [Back, 2]
  14. S. Liu, Y. Kawagoe, Y. Makino and S. Oshita, Effects of nanobubbles on the physicochemical properties of water:
    The basis for peculiar properties of water containing nanobubbles, Chem. Eng. Sci. 93 (2013) 250-256. [Back, 2]
  15. K. Ebina, K. Shi, M. Hirao, J. Hashimoto, Y. Kawato, S. Kaneshiro, T. Morimoto, K. Koizumi and H. Yoshikawa, Oxygen and air nanobubble water solution promote the growth of plants, fishes, and mice. PLoS ONE 8(6) (2013) e65339. doi:10.1371/journal.pone.0065339. [Back, 2]
  16. A. M. Kiszonas, E. P. Fuerst and C. F. Morris, Wheat arabinoxylan structure provides insight into function, Cereal Chem. 90 (2013) 387-395. [Back]
  17. R. J. Cooper, T. M. Chang and E. R. Williams, Hydrated alkali metal ions: Spectroscopic evidence for clathrates, J. Phys. Chem. A 117 (2013) 6571-6579. [Back]
  18. P. Karásek, L. Staviková, J. Planeta, B. Hohnová and M. Roth, Solubility of fused silica in sub- and supercritical water: estimation from a thermodynamic model, J. Supercritical Fluids 83 (2013) 72-77. [Back]
  19. A. Taschin, P. Bartolini, R. Eramo, R. Righini and R. Torre, Evidence of two distinct local structures of water
    from ambient to supercooled conditions, Nature Comm. 4 (2013) 2401 | doi: 10.1038/ncomms3401. [Back, 2]
  20. R. Senesi, D. Flammini, A. I. Kolesnikov, É. D. Murray, G. Galli and C. Andreani, The quantum nature of the OH stretching mode in ice and water probed by neutron scattering experiments, J. Chem. Phys. 139 (2013) 074504. [Back]
  21. C. P. Herrero and R. Ramírez, Topological characterization of crystalline ice structures from coordination sequences, Phys. Chem. Chem. Phys. 15 (2013) 16676-16685; arXiv:1307.4611v1 [physics.chem-ph] 17 Jul 2013. [Back]
  22. T. E. Markland and B. J. Berne, Unraveling quantum mechanical effects in water using isotopic fractionation, PNAS 109 (2013) 7988-7991, http://arxiv.org/abs/1307.7684. [Back]
  23. J. Canton, Experiments to prove that water is not incompressible, Phil. Trans. R Soc. 52 (1761) 640-643. [Back]
  24. V. E. Chechko, V. Ya. Gotsulsky and M. P. Malomuzh, Peculiar points in the phase diagram of the water-alcohol solutions, Cond. Matter Phys. 16 (2013) 1-9. [Back]
  25. M. Ceriotti, J. Cuny, M. Parrinello and D. E. Manolopoulos, Nuclear quantum effects and hydrogen bond fluctuations in water, PNAS 110 (2013) 15591-15596. [Back, 2, 3]  [Back to Top to top of page]
  26. A. Hassanali, F. Giberti, J. Cuny, T. D. Kühne and M. Parrinello, Proton transfer through the water gossamer, PNAS 110 (2013) 13723-13728; E. Codorniu-Hernández and P. G. Kusalik, Probing the mechanisms of proton transfer in liquid water, PNAS 110 (2013) 13697-13698. [Back]
  27. (a) M. Guthrie, R. Boehler, C. A. Tulk, J. J. Molaison, A. M. dos Santos, K. Li and R. J. Hemley, Neutron diffraction observations of interstitial protons in dense ice, PNAS 110 (2013) 10552-10556; but see (b) T. Iitaka, H. Fukui, Z. Li1, N. Hiraoka and T. Irifune, Pressure-induced dissociation of water molecules in ice VII, Sci. Rep. 5 (2015) 12551. [Back, 2]

  28. D. Prada-Gracia, R. Shevchuk and F. Rao, The quest for self-consistency in hydrogen bond definitions, J. Chem. Phys. 139 (2013) 084501; arXiv:1305.3060v2 [physics.chem-ph]. [Back]
  29. Y. Li, J. Li and F. Wang, Liquid–liquid transition in supercooled water suggested by microsecond simulations, PNAS 110 (2013) 12209-12212. [Back]
  30. Y. Ni, S. M. Gruenbaum and J. L. Skinner, Slow hydrogen-bond switching dynamics at the water surface revealed by theoretical two-dimensional sum-frequency spectroscopy, PNAS 110 (2013) 1992-1998. [Back]
  31. L.-P. Wang, T. Head-Gordon, J. W. Ponder, P. Ren, J. D. Chodera, P. K. Eastman, T. J. Martinez and V. S. Pande, Systematic improvement of a classical molecular model of water, J. Phys. Chem. B , 117 (2013) 9956-9972 (based on P. Ren and J. W. Ponder, Polarizable atomic multipole water model for molecular mechanics simulation, J. Phys. Chem. B 107 (2003) 5933-5947); M. L. Laury, L.-P. Wang, V. S. Pande, T, Head-Gordon and J. W. Ponder, Revised parameters for the AMOEBA polarizable atomic multipole water model, J. Phys. Chem. B, (2015) Article ASAP doi: 10.1021/jp510896n. [Back]
  32. T. Loerting, M. Bauer, I. Kohl, K. Watschinger, K. Winkel, and E. Mayer, Cryoflotation: densities of amorphous and crystalline ices J. Phys. Chem. B 115 (2011) 14167-14175. [Back]
  33. N. Giovambattista, K. Amann-Winkel and T. Loerting, Amorphous ices, In: Liquid Polymorphism, Ed. H. E. Stanley: Adv. Chem. Phys. 152 (2013) 139-173. [Back]
  34. O. Shih, A. H. England, G. C. Dallinger, J. W. Smith, K. C. Duffey, R. C. Cohen, D. Prendergast and R. J. Saykally, Cation-cation contact pairing in water: Guanidinium, J. Chem. Phys.139 (2013) 035104. [Back]
  35. M. Pastorczak, S. T. van der Post and H. J. Bakker, Cooperative hydration of carboxylate groups with alkali cations, Phys.Chem. Chem. Phys.15 (2013) 17767. [Back]
  36. (a) J. M. Schurr, B. S. Fujimoto, L, Huynh and D. T. Chiu. A Theory of Macromolecular Chemotaxis, J. Phys. Chem. B, 117 (2013) 7626-7652; J. M. Schurr, Phenomena associated with gel-water interfaces. Analyses and alternatives to the long-range ordered water hypothesis, J. Phys. Chem. B. 117 (2013):7653-7674; (b) Pollack, GH. Comment on “A Theory of Macromolecular Chemotaxis” and “Phenomena Associated with Gel–Water Interfaces. Analyses and Alternatives to the Long-Range Ordered Water Hypothesis”, J. Phys. Chem. B. 117 (2013):7843-7846. [Back]
  37. A. Fernández, The principle of minimal episteric distortion of the water matrix and its steering role in protein folding, J. Chem. Phys. 139 (2013) 085101. [Back]
  38. R. Senesi, G. Romanelli, M. A. Adams and C. Andreani, Temperature dependence of the zero point kinetic energy in ice and water above room temperature, Chem. Phys. 427 (2013) 106-110; A. Pietropaolo, R. Senesi, C. Andreani and J. Mayers, Quantum effects in water: proton kinetic energy maxima in stable and supercooled liquid, Brazilian J. Phys. 39 (2009) 318-321. [Back, 2]
  39. J. A. Kaduk and T. N. Blanton, An improved structural model for cellulose II, Powder Diffraction 28 (2013) 194-199. [Back]
  40. R. D. Macdonald and M. Khajehpour, Effects of the osmolyte TMAO (trimethylamine-N-oxide) on aqueous hydrophobic contact-pair interactions, Biophys.Chem. 184 (2013) 101-107. [Back]
  41. A. A. Khamzin and R. R. Nigmatullin, Thermodynamic and magnetic properties of linear spin complexes of ortho-water molecules, Doklady Phys. Chem. 452 (2013) 247-250 (Doklady Akad. Nauk 452 (2013) 534-538). [Back]
  42. C. Chen, C. Huang, I. Waluyo, D. Nordlund, T.-C. Weng, D. Sokaras, T. Weiss, U. Bergmann, L. G. M. Pettersson and A. Nilsson, Solvation structures of protons and hydroxide ions in water, J. Chem. Phys. 138 (2013) 154506. [Back, 2]
  43. Aristotle, Meteorologica 350 BC. Translated by E. W. Webster. [Back]
  44. C. Q. Sun, X. Zhang, X. Fu, W. Zheng, J. Kuo, Y. Zhou, Z. Shen and J. Zhou, Density and phonon-stiffness anomalies of water and ice in the full temperature range, J. Phys. Chem. Lett. 4 (2013) 3238-3244. [Back]
  45. S. Osfouri, R. Azin and E. Pakdaman, Dynamics of water state in nanoconfined environment, J. Taiwan Inst. Chem. Eng. 45 (2013) 828-832; A.K. Soper, Radical re-appraisal of water structure in hydrophilic confinement, Chem.Phys. Lett. 590 (2013) 1-15. [Back]
  46. M. Kondoh, Y. Ohshima and M. Tsubouchi, Ion effects on the structure of water studied by terahertz time-domain spectroscopy, Chem.Phys. Lett. 591 (2014) 317-322 [Back]
  47. A. Gholaminejad and R. Hosseini, A study of water supercooling, J. Electronics Cool. Therm. Contr. 3 (2013) 1-6. [Back]
  48. K. Amann-Winkel, C. Gainaru, P. H. Handle, M. Seidl, H. Nelson, R. Böhmer and T. Loerting, Water’s second glass transition, PNAS 110 (2013) 17720-17725; A. G. Smart, ”Melting” ice yields hints of a second liquid water phase, Physics Today 66 (2013 ) 16-17; G.P. Johari, Comment on “Water’s second glass transition, K. Amann-Winkel, C.
    Gainaru, P. H. Handle, M. Seidl, H. Nelson, R. Böhmer, and T. Loerting, PNAS 110 (2013) 17720.”, and the sub-Tg features of pressure-densified glasses, Thermochim. Acta 617 (2015) 208-218; J. Stern, M. Seidl, C. Gainaru, V. Fuentes-Landete, K. Amann-Winkel, P. Handle, K. W. Köster, H. Nelson, R. Böhmer and T. Loerting, Experimental evidence for two distinct deeply supercooled liquid states of water. Response to "Comment on 'Water's second glass transition'", by G. P. Johari, Thermochim. Acta 617 (2015) 200-207; C. U. Kim, M. W. Tate and S. M. Gruner, Glass-to-cryogenic-liquid transitions in aqueous solutions suggested by crack healing, PNAS 112 (2015) 11765–11770. [Back, 2]
  49. P. Madl, E. Del Giudice, V. L. Voeikov, A. Tedeschi, P. Kolarž, M. Gaisberger and A. Hartl, Evidence of coherent dynamics in water droplets of waterfalls, WATER 5 (2013) 57-68. [Back, 2]
  50. P. Hamm and J. Savolainen, Two-dimensional-Raman-terahertz spectroscopy of water: Theory, J. Chem. Phys. 136 (2012) 094516; J. Savolainen, S. Ahmed and P. Hamm, Two-dimensional Raman-terahertz spectroscopy of water, PNAS 110 (2013) 20402-20407. [Back, 2]  [Back to Top to top of page]
  51. F. Corsetti, E. Artacho, J. M. Soler, S. S. Alexandre and M.-V. Fernández-Serra, Room temperature compressibility and diffusivity of liquid water from first principles, J. Chem. Phys. 139 (2013) 194502. [Back]
  52. B. Ruscic, Active thermochemical tables: water and water dimer, J. Phys. Chem. A 117 (2013) 11940-11953. [Back, 2]
  53. A. S. Bednyakov, N. F. Stepanov, and Yu. V. Novakovskaya, Large amplitude oscillations of protons in water clusters, Russian J. Phys. Chem. A, 88 (2014) 287-294, Z. Fiz. Khim. 88 (2014) 297-305. [Back, 2]
  54. L. Chen, C. Li and Z, Ren, Variation in surface tension of water in high magnetic field, Adv. Mater. Res. 750-752 (2013) 2279-2282. [Back]
  55. B. Medronho and B. Lindman, Competing forces during cellulose dissolution: from solvents to mechanisms, Curr. Opin. Coll. Interface Sci. 19 (2014) 32-40. [Back]
  56. G. Pallares, M. E. M. Azouzi, M. A. Gonzalez, J. L. Aragones, J. L. F. Abascal, C. Valeriani and F. Caupin, Anomalies in bulk supercooled water at negative pressure, PNAS. 111 (2014) 7936-7941; arXiv:1311.1623v2 [cond-mat.stat-mech] 27 Nov 2013. [Back]
  57. M. F. Chaplin, Interfacial osmotic pressure, Aqua Incognita: why ice floats on water and Galileo 400 years on, Ed. P. Lo Nostro and B. W. Ninham, ISBN: 9781925138214 (Connor Court, Ballarat, 2014) pp 329-340. [Back, 2, 3]
  58. H. H. Mollenhauer and D. J. Morré, Structural compartmentation of the cytosol: zones of exclusion, zones of adhesion, cytoskeletal and intercisternal elements. In Roodyn D. B. (ed.) Subcellular Biochemistry, vol. 5 (Plenum Press, 1978) pp. 327-362; K. Green and T. Otori, Direct measurements of membrane unstirred layers, J. Physiol. 207 (1970) 93-102; H. Yoshida, N, Ise, and T. Hashimoto, Void structure and vapor–liquid condensation in dilute deionized colloidal dispersions, J. Chem. Phys. 103 (1995) 10146. [Back]
  59. C.-Y. Ruan, V. A. Lobastov,  F. Vigliotti,  S. Chen and A. H. Zewail, Ultrafast electron crystallography of interfacial water, Science 304 (2004) 80-84. [Back]
  60. K. Sadakane, H. Seto, H. Endo and M. Shibayama, A periodic structure in a mixture of D2O/3-methylpyridine /NaBPh4 induced by solvation effect, J. Physical Soc .Japan 76 (2007) 113602. [Back]
  61. H. Yoo, D. R. Baker, C. M. Pirie, B. Hovakeemian and G. H. Pollack, Characteristics of water adjacent to hydrophilic interfaces. In Water: the Forgotten Molecule, D. LeBihan, and H. Fukuyama (eds), (Pan Stanford, 2011) pp 123-136. [Back]
  62. D. T. Nhan and G. H. Pollack, Effect of particle diameter on exclusion-zone size, Int. J. Des. Nat. Ecodyn. 6 (2011) 139-144. [Back]
  63. V. V. Goncharuk, A. A. Kavitskaya, I. Yu Romanyukina and O. A Loboda, Revealing water’s secrets: deuterium depleted water, Chemistry Central J. 7 (2013) 103. [Back]
  64. V. Fernicola, L. Rosso and M. Giovannini, Investigation of the ice–water vapor equilibrium along the sublimation line, Int J Thermophys 33 (2012) 1363-1373. [Back, 2]
  65. P. Bellavite, M. Marzotto, D. Olioso, E. Moratti and A. Conforti, High-dilution effects revisited. 1. Physicochemical aspects, Homeopathy 103 (2014) 4-21; P. Bellavite, M. Marzotto, D. Olioso, E. Moratti and A. Conforti, High-dilution effects revisited. 2. Pharmacodynamic mechanisms, Homeopathy 103 (2014) 22-43
  66. B. Bhushan, Y. Pan and S. Daniels, AFM characterization of nanobubble formation and slip condition in oxygenated and electrokinetically altered fluids, J. Colloid Interface Sci. 392 (2013) 105-116. [Back]
  67. A. Ushida, T. Hasegawa, T. Narumi and T. Nakajima, Flow properties of nanobubble mixtures passing through micro-orifices, Int. J.Heat Fluid Flow 40 (2013) 106-115. [Back]
  68. M. Takahashi, K. Chiba and P. Li, Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus, Japan J. Phys. Chem. B 111 (2007) 1343-1347. [Back, 2]
  69. A. S. Biryukov, V. F. Gavrikov, L. O. Nikiforova and V. A. Shcheglov, New physical methods of disinfection of water, J. Russian Laser Res.26 (2005) 13-25. [Back]
  70. S. D. Zakharov, Ortho/para spin isomers of H2O molecules as a factor responsible for formation of two structural motifs in water, Biophysics 58 (2013) 718-722; originally Biofizika 58 (2013) 904-909. [Back]
  71. M. Seidl, K. Amann-Winkel, P. H. Handle, G. Zifferer and T. Loerting, From parallel to single crystallization kinetics in high-density amorphous ice, Phys. Rev. B 88 (2013) 174105. [Back]
  72. A. Angulo-Sherman and H. Mercado-Uribe, Water under inner pressure: A dielectric spectroscopy study, Phys. Rev. E 89 (2014) 022406. [Back]
  73. J. K. Beattie, A. M. Djerdjev, A. Gray-Weale, N. Kallay, J. Lützenkirchen, T. Preočanin and A. Selmani, pH and the surface tension of water, J. Colloid Interface Sci. 422 (2014) 54-57, Note that a factor of 2.3 is missing from the last term of equation 4; P. Jungwirth and D. J. Tobias, A Comment on “pH and the surface tension of water”, J. Colloid Interface Sci. 448 (2015) 593; J. K. Beattie, A. M. Djerdjev, N. Kallay, J. Lützenkirchen and T. Preočanin, Response to Comment on “pH and the surface tension of water”, J. Colloid Interface Sci. 448 (2015) 594-595. [Back]
  74. J. H. Weijs, J. R. T. Seddon and D. Lohse, Diffusive shielding stabilizes bulk nanobubble clusters, ChemPhysChem 13 (2012) 2197-2204. [Back, 2]
  75. M.-Y. Lin and L.-W. Hourng, Effects of magnetic field and pulse potential on hydrogen production via water electrolysis, Int. J. Energy Res. 38 ( 2014) 106-116. [Back]  [Back to Top to top of page]
  76. S. M. Pershin, A. F. Bunkin , Temperature evolution of the relative concentration of the H2O ortho/para spin isomers in water studied by four-photon laser spectroscopy, Laser Phys. 19 (2009) 1410-1414; S. M. Pershin, Effect of quantum differences of ortho and para H2O spin-isomers on water properties: biophysical aspect, Biophysics, 58 (2013) 723-730. [Back]
  77. J. Segarra-Martí, D. Roca-Sanjuán and M. Merchán, On the hexagonal ice-like model of structured water: Theoretical analysis of the low-lying excited states, Comp. Theor. Chem. 1040-1041 (2014) 266-273. This hypothesis has been disproved by an equally unlikely paper from the same authors J. Segarra-Martí, D. Roca-Sanjuán and M. Merchán, Can the hexagonal ice-like model render the spectroscopic fingerprints of structured water? Feedback from quantum-chemical computations, Entropy 16 (2014) 4101-4120. A further related paper ignores basic chemistry, K. Oehr and P. H. LeMay, The case for tetrahedral oxy-subhydride (TOSH) structures in the exclusion zones of anchored polar solvents including water, Entropy 16 (2014) 5712-5720. [Back, 2]
  78. K. Himoto, M. Matsumoto and H. Tanaka, Yet another criticality of water, Phys.Chem.Chem.Phys.16 (2014) 5081-5087. [Back]
  79. D. Mudgil, S. Barak and B. S. Khatkar, Guar gum: processing, properties and food applications—A review, J. Food Sci. Technol. 51 (2014) 409-418. [Back]
  80. P. T. Kiss and A. Baranyai, A systematic development of a polarizable potential of water, J. Chem. Phys. 138 (2013) 204507; P. T. Kiss and A. Baranyai, Anomalous properties of water predicted by the BK3 model, J. Chem. Phys. 140 (2014) 154505; P. T. Kiss and A. Baranyai, A new polarizable force field for alkali and halide ions, J. Chem. Phys. 141 (2014) 114501 . [Back]
  81. F. Mallamace, C. Corsaro, D. Mallamace, C. Vasic and H. E. Stanley, The thermodynamical response functions and the origin of the anomalous behavior of liquid water, Faraday Discuss, 167 (2013) 95-108. [Back, 2]
  82. K. C. Verma and A. S. Kushwaha, Demineralization of drinking water: Is it prudent?, Medical J. Armed Forces India 70 (2014) 377-379. [Back]
  83. A. Hermann, W. G. Schmidt and P. Schwerdtfeger, Resolving the optical spectrum of water: Coordination and electrostatic effects, Phys. Rev. Lett. 100 (2008) 207403. [Back]
  84. T. Sun, F.-H. Lin, R. L. Campbell, J. S. Allingham and P. L. Davies, An antifreeze protein folds with an interior network of more than 400 semi-clathrate waters, Science 343 (2014) 795-798. [Back]
  85. Z. Pawlak, W. Urbaniak and A. Oloyede, The relationship between friction and wettability in aqueous environment, Wear 271 (2011) 1745-1749. [Back]
  86. L. F. Roncaratti, D. Cappelletti and F. Pirani, The spontaneous synchronized dance of pairs of water molecules, J. Chem. Phys. 140 (2014) 124318. [Back]
  87. M. Suzuki, What is “hypermobile” water?: detected in alkali halide, adenosine phosphate, and F-actin solutions by high resolution microwave dielectric spectroscopy, Pure Appl. Chem.86 (2014) 181-189. [Back]
  88. U. Buck, C. C. Pradzynski, T. Zeuch, J. M. Dieterich and B. Hartke, A size resolved investigation of large water clusters, Phys.Chem.Chem.Phys. 16 (2014) 6859-6871. [Back]
  89. V. Holten, J. V. Sengers, and M. A. Anisimov, Equation of state for supercooled water at pressures up to 400 MPa, J. Phys. Chem. Ref. Data 43 (2014) 043101; arXiv:1403.6777v1 [cond-mat.stat-mech] 26 Mar 2014; International Association for the Properties of Water and Steam guideline on thermodynamic properties of supercooled water (Int. Assoc. Prop. Water Steam, Stockholm), Tech. Rep. IAPWS (2015) G12-15.. [Back, 2]
  90. Z. Steinczinger and L. Pusztai, Comparison of the TIP4P-2005, SWM4-DP and BK3 interaction potentials of liquid water with respect to their consistency with neutron and X-ray diffraction data of pure water, Condens. Matter Phys. 16 (2013) 43604: arXiv:1312.4557v1 [cond-mat.soft] 16 Dec 2013; Z. Steinczinger, P. Jóvári, L. Pusztai, Comparison of 9 classical interaction potentials of liquid water: Simultaneous Reverse Monte Carlo modeling of X-ray and neutron diffraction results and partial radial distribution functions from computer simulations, J. Mol. Liq. 228 (2017) 19-24. [Back]
  91. P. Jungwirth and P. S. Cremer, Beyond Hofmeister, Nature Chem. 6 (2014) 261-263. [Back]
  92. S. Dolnicar, A. Hurlimann and B. Grün, Branding water, Water Res. 57 (2014) 325-338. [Back]
  93. S. K. Seth, Discrete cubic water cluster: An unusual building block of 3D supramolecular network, Inorg. Chem. Commun. 43 (2014) 60-63. [Back]
  94. M. J. Down, J. Tennyson, M. Hara, Y. Hatano and K. Kobayashi, Analysis of a tritium enhanced water spectrum between 720 and 7245 cm-1 using new variational calculations, J. Mol. Spectrosc. 289 (2013) 35-40. [Back]
  95. T. D. Kühne and R. Z. Khaliullin, Nature of the asymmetry in the hydrogen-bond networks of hexagonal ice and liquid water, J. Am. Chem. Soc. 136 (2014) 3395-3399. [Back, 2]
  96. T. Kimura, Y. Kuwayama and T. Yagi, Melting temperatures of H2O up to 72 GPa measured in a diamond anvil cell using CO2 laser heating technique, J. Chem. Phys. 140 (2014) 074501. [Back, 2]
  97. E. Blackwelder, The hardness of ice, Am. J. Sci. 238 (194O) 61-62. [Back, 2]
  98. I. I. Geru, Water structure, quantum nature of hydrogen bonds and diffusion of water molecules in chloride aqueous solutions, in Management of water quality in Moldova, Water Science and Technology Library Vol. 69, Ed. G. Duca, (Springer, Switzerland, 2014) pp 21-34. [Back]
  99. S. Fanetti, A. Lapini, M. Pagliai, M. Citroni, M. Di Donato, S. Scandolo, R. Righini and R. Bini, Structure and dynamics of low-density and high-density liquid water at hgh pressure, J. Phys. Chem. Lett. 5 (2014) 235-240. [Back]
  100. E. M. Kramer and D. R. Myers Five popular misconceptions about osmosis, Am. J. Phys. 80 (2012) 694-699 [Back]  [Back to Top to top of page]

 

 

Home | Site Index | Site Map | Search | LSBU | Top

 

This page was established in 2013 and last updated by Martin Chaplin on 15 August, 2017


Creative Commons License
This work is licensed under a Creative Commons Attribution
-Noncommercial-No Derivative Works 2.0 UK: England & Wales License