Water site headerMasthead Island, Great Barrier Reef Print-me keygo to Water Visitor Book contributions
Go to my page Water Structure and Science

Water Structure and Science References 2101 - 2200


  1. C. del Val, L. Bondar and A.-N. Bondar, Coupling between inter-helical hydrogen bonding and water dynamics in a proton transporter, J. Struct. Biol. 186 (2014) 95-111. [Back]
  2. J. W. Bye, S. Meliga, D. Ferachou, G. Cinque, J. A. Zeitler and R. J. Falconer Analysis of the hydration water around bovine serum albumin using terahertz coherent synchrotron radiation, J. Phys. Chem. A, 118 (2014) 83-88; O. Sushko, R. Dubrovka and R. S. Donnan, Sub-terahertz spectroscopy reveals that proteins influence the properties of water at greater distances than previously detected, J. Chem. Phys. 142 (2015) 055101; O. Sushko, R. Dubrovka and R. S. Donnan, Erratum: “Sub-terahertz spectroscopy reveals that proteins influence the properties of water at greater distances than previously detected” [J. Chem. Phys. 142, 055101 (2015)], J. Chem. Phys. 142 (2015) 079901. [Back]
  3. C. J. Van Oss, R. F. Giese , R. Wentzek, J. Norris and E. M. Chuvilin, Surface tension parameters of ice obtained from contact angle data and from positive and negative particle adhesion to advancing freezing fronts, J. Adhesion Sci. Technol. 6 (1992) 503-516. [Back]
  4. R. M. Espinosa-Marzal, G. Fontani, F. B. Reusch, M. Roba, N. D. Spencer and R. Crockett, Sugars communicate through water: Oriented glycans induce water structuring, Biophys. J. 104 (2013) 2686-2694. [Back, 2]
  5. B. I. Kim, R. D. Boehm and J. R. Bonander, Direct observation of self-assembled chain-like water structures in a nanoscopic water meniscus, J. Chem. Phys. 139 (2013) 054701. [Back]
  6. G. Carmignani, S. Sitkiewitz and J. W. Webley, Recovery of retrograde soluble solute for forward osmosis water treatment, U. S. Patent Appl. (2012) 20120267308. [Back]
  7. Z. Pavelek, Comparison of the methods used for studying the equilibrium of the lyate ions in water—methanol mixture, Chem. Papers 42 (1988) 299-304. [Back]
  8. J. R. T. Seddon, D. Lohse, W A. Ducker and V S. J. Craig, A deliberation on nanobubbles at surfaces and in bulk, ChemPhysChem 13 (2012) 2179-2187; P. Attard, Thermodynamic stability of nanobubbles arxiv:1503.04365v1 [physics.chem-ph] (2015). [Back]
  9. D. Sette and F. Wanderlingh, Nucleation by cosmic rays in ultrasonic cavitation, Phys. Rev. 125 (1962) 409-417. [Back]
  10. S.Wi, J. Spano and W. A. Ducker, Hindered rotation of water near C60, J. Phys . Chem. C 114 (2010) 14986-14991. [Back]
  11. A. M. Tokmachev, A. L. Tchougréeff and R. Dronskowski, Hydrogen-bond networks in water clusters (H2O)20: an exhaustive quantum-chemical analysis. ChemPhysChem 11 ( 2010) 384-388. [Back]
  12. E. H. Hardy, A. Zygar, M. D. Zeidler, M. Holz and F. D. Sacher, Isotope effect on the translational and rotational motion in liquid water and ammonia, J. Chem. Phys. 114 (2001) 3174-3181. [Back, 2]
  13. E. Rozners, Determination of nucleic acid hydration using osmotic stress, Curr Protoc Nucleic Acid Chem. (2010) Unit–7.14. [Back]
  14. C. J. Pickard, M. Martinez-Canales and R. J. Needs, Decomposition and terapascal phases of water ice, Phys. Rev. Lett. 110 (2013) 245701. [Back]
  15. Z. Cao. and J. U. Bowie, An energetic scale for equilibrium H/D fractionation factors illuminates hydrogen bond free energies in proteins. Protein Sci. 23 (2014) 566-575. [Back]
  16. P. Atkins and J. de Paula, Atkins' Physical Chemistry, 7th Ed. (OUP, Oxford, 2002). [Back, 2]
  17. Y. Levin and A. P dos Santos, Ions at hydrophobic interfaces, J. Phys.: Condens. Matter 26 (2014) 203101. [Back]
  18. A. A. Volkov, N. V. Anisimov, V. N. Nikiforov, Yu. A. Pirogov and A. S. Prokhorov, Search for an NMR Signal from spin isomers of water in H2O/D2O mixture, Biophysics 59 (2014) 49-51; Biofizika 59 (2014) 61-63. [Back]
  19. J. Chiu, F. W. Starr and N. Giovambattista, Heating-induced glass-glass and glass-liquid transformations in computer simulations of water, J. Chem.Phys. 140 (2014) 114504. [Back, 2]
  20. U. Bergmann, A. Di Cicco, P. Wernet, E. Principi, P. Glatzel and A. Nilsson, Nearest-neighbor oxygen distances in liquid water and ice observed by x-ray Raman based extended x-ray absorption fine structure, J. Chem. Phys. 127 (2007) 174504. [Back]
  21. Yu. I. Prylutskyy, V. I. Petrenko, O. I. Ivankov, O. A. Kyzyma, L. A. Bulavin, O. O. Litsis, M. P. Evstigneev, V. V. Cherepanov, A. G. Naumovets and U. Ritter, On the origin of C60 fullerene solubility in aqueous solution, Langmuir 30 (2014) 3967-3970. [Back]
  22. D. P. Voronin, A. S. Buchelnikov, V. V. Kostjukov, S. V. Khrapatiy, D. Wyrzykowski, J. Piosik, Yu. I. Prylutskyy, U. Ritter and M. P. Evstigneev, Evidence of entropically driven C60 fullerene aggregation in aqueous solution, J. Chem. Phys. 140 (2014) 104909. [Back]
  23. C. Barras, No more primal soup: Creating life without water, New Scientist 2965 (2014) 36-39. [Back]
  24. T. Scheike, W. Böhlmann, P. Esquinazi, J. Barzola-Quiquia, A. Ballestar and A. Setzer, Can doping graphite trigger room temperature superconductivity? Evidence for granular high-temperature superconductivity in water-treated graphite powder, Adv. M ater. 24 (2012) 5826-5831. [Back]
  25. K. E. Otto, Z. Xue, P. Zielke and M. A. Suhm, The Raman spectrum of isolated water clusters, Phys. Chem. Chem. Phys. 16 (2014) 9849-9858. [Back] [Back to Top to top of page]
  26. H. Kadobayashi, H. Hirai, T. Matsuoka, Y. Ohishi and Y. Yamamoto, A possible existence of phase change of deuterated ice VII at about 11 GPa by X-ray and Raman studies, J. Phys.: Conf. Series 500 (2014) 182017; H. Hirai, H. Kadobayashi, T. Matsuoka, Y. Ohishi and Y. Yamamoto, High pressure X-ray diffraction and Raman spectroscopic studies of the phase change of D2O ice VII at approximately 11 GPa, High Pressu re Res. 34 (2014) 289-296. [Back]
  27. J. Russo and H. Tanaka, Understanding water’s anomalies with locally favoured structures, Nature Comm. 5 (2014) 3556, arXiv:1308.4231v1 [cond-mat.soft] 20 Aug 2013. [Back]
  28. N. M. Levinson and S. G. Boxer, A conserved water-mediated hydrogen bond network defines bosutinib’s kinase selectivity, Nature Chem. Biol. 10 (2014) 127-132. [Back]
  29. V. Holten, D. T. Limmer, V. Molinero and M. A. Anisimov, Nature of the anomalies in the supercooled liquid state of the mW model of water. J. Chem. Phys. 138 (2013) 174501; http://arxiv.org/pdf/1302.5691v2 [physics.chem-ph] 1 Apr 2013. [Back]
  30. D. T. Limmer and D. Chandler, Theory of amorphous ices, PNAS 111 (2014) 9413-9418; arXiv:1306.4728v4 [cond-mat.stat-mech] 21 Apr 2014. [Back]
  31. G. Cassone, P. V. Giaquinta, F. Saija and A. M. Saitta, Proton conduction in water ices under an electric field, J. Phys. Chem. B 118 (2014) 4419-4424; A.M. Saitta , F. Saija and P. V. Giaquinta, Ab initio molecular dynamics study of dissociation of water under an electric field, Phys. Rev. Lett. 108 (2012) 207801. [Back]
  32. T. P. Silverstein, The aqueous proton is hydrated by more than one water molecule: is the hydronium ion a useful conceit? J. Chem. Educ. 91 (2014) 608-610. [Back, 2]
  33. A. I. Boldyrev and J. Simons, Ab initio study of geometrically metastable multiprotonated species: MHnk+, J. Chem. Phys. 97 (1992) 4272-4281. [Back]
  34. C. A. Reed, Myths about the proton: the nature of H+ in condensed media. Acc. Chem. Res. 46 (2013) 2567-2575. [Back, 2]
  35. E. S. Stoyanov, I. V. Stoyanova and C. A. Reed, The unique nature of H+ in water, Chem. Sci. 2 (2011) 462-472. [Back]
  36. W. Kulig and N. Agmon, Both Zundel and Eigen isomers contribute to the IR spectrum of the gas-phase H9O4+ cluster, J. Phys. Chem. B 118 (2014,) 278-286. [Back]
  37. A. Kumar, S. R. Gadre, N. Mohan and C. H. Suresh, Lone pairs: an electrostatic viewpoint, J. Phys. Chem. A 118 (2014) 526-532. [Back, 2]
  38. D. Lis, E. H. G. Backus, J. Hunger, S. H. Parekh and M. Bonn, Liquid flow along a solid surface reversibly alters interfacial chemistry, Science 344 (2014) 1138-1142 ; G. A. Waychunas, Disrupting dissolving ions at surfaces with fluid flow, Science 344 (2014) 1094-1095. [Back, 2]
  39. S. Enami and A. J. Colussi, Long-range specific ion-ion interactions in hydrogen-bonded liquid films, J. Chem. Phys. 138 (2013) 184706; S. Enami and A. J. Colussi, Ion-specific long-range correlations on interfacial water driven by hydrogen bond fluctuations, J. Phys. Chem. B 118 (2014) 1861-1866. [Back]
  40. N. Galamba, Water tetrahedrons, hydrogen-bond dynamics, and the orientational mobility of water around hydrophobic solutes, J. Phys. Chem. B 118 (2014) 4169-4176; see also N. Galamba, Water’s structure around hydrophobic solutes and the iceberg model. J. Phys. Chem. B 117(2013) 2153-2159; G. Graziano, Comment on “Water’s structure around hydrophobic solutes and the iceberg model” J. Phys. Chem. B 118 (2014) 2598-2599; N. Galamba, Reply to “Water’s structure around hydrophobic solutes and the iceberg model’”, J. Phys. Chem. B 118 (2014) 2600-2603. [Back]
  41. L. Kong, C. Lee, S. H. Kim and G. R. Ziegler, Characterization of starch polymorphic structures using vibrational
    sum frequency generation spectroscopy, J. Phys. Chem. B 118 (2014) 1775-1783. [Back]
  42. J. Hrubý, V. Vinš, R. Mareš, J. Hykl and J. Kalová, Surface tension of supercooled water: No inflection point down to −25 °C, J. Phys. Chem. Lett. 5 (2014) 425-428. [Back]
  43. J. A. Sellberg, C. Huang, T. A. McQueen, N. D. Loh, H. Laksmono, D. Schlesinge, R. G. Sierra, D. Nordlund, C. Y. Hampton, D. Starodub, D. P. DePonte, M. Beye, C. Chen, A. V. Martin, A. Barty, K. T. Wikfeldt, T. M. Weiss, C. Caronna, J. Feldkamp, L. B. Skinner, M. M. Seibert, M. Messerschmidt, G. J.Williams, S. Boutet, L. G. M. Pettersson, M. J. Bogan and A. Nilsson, Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature, Nature 510 (2014) 381-384. [Back, 2]
  44. J. C. Palmer, F. Martelli, Y. Liu, R. Car, A. Z. Panagiotopoulos and P. G. Debenedetti, Metastable liquid-liquid transition in a molecular model of water, Nature 510 (2014) 385-358; this is challenged by D. Chandler, Metastability and no criticality, Nature 531 (2016) E1–E2, doi:10.1038/nature16539; and D. Chandler, Illusions of phase coexistence: Comments on \Metastable liquid-liquid transition ... " by J. C. Palmer et al., Nature 510, 385 (2014), arXiv:1407.6854v2 [cond-mat.stat-mech] 20 Aug 2014; and the challenge rebutted by J. C. Palmer, F. Martelli, Y. Liu, R. Car, A. Z. Panagiotopoulos and P. G. Debenedetti, Palmer et al. reply, Nature 531 (2016) E2-E3, doi:10.1038/nature16540. [Back]
  45. T. Bartels-Rausch, V. Bergeron, J. H. E. Cartwright, R. Escribano, J. L. Finney, H. Grothe, P. J. Gutirrez, J. Haapala, W. F. Kuhs, J. B. C. Pettersson, S. D. Price, C. I. Sainz-Daz, D. J. Stokes, G. Strazzulla, E. S. Thomson, H. Trinks, and N. Uras-Aytemiz, Ice structures, patterns, and processes: A view across the icefields, Rev. Mod. Phys. 84 (2012) 885-944. [Back]
  46. P. Geiger, C. Dellago, M. Macher, C. Franchini, G. Kresse, J. Bernard, J. N. Stern and T. Loerting, Proton ordering of cubic ice Ic: Spectroscopy and computer simulations, J. Phys. Chem. C 118 (2014) 10989-10997. [Back 2]
  47. M. Soniat and S. W. Rick Charge transfer effects of ions at the liquid water/vapor interface, J. Chem.Phys. 140 (2014) 184703. [Back]
  48. J. M. Silla, R. A. Cormanich, R Rittner and M. P. Freitas, Does intramolecular hydrogen bond play a key role in the stereochemistry of α- and β-d-glucose?, Carbohydr. Res. 396 (2014) 9-13. [Back]
  49. J. Russo, F. Romano and H. Tanaka, New metastable form of ice and its role in the homogeneous crystallization of water, Nature Mat. 13 (2014) 733-739; B. Slater and D. Quigley, Zeroing in on ice, Nature Mat. 13 (2014) 670-671; D. Quigley, D. Alfè, and B. Slater, Communication: On the stability of ice 0, ice i, and I h, J. Chem. Phys. 141, (2014) 161102 . [Back]
  50. A. K. Soper, Supercooled water: Continuous trends, Nature Mat. 13 (2014) 671-673; A. Angell, Supercooled water: Two phases? Nature Mat. 13 (2014) 673-675; Editorial comment, Debated waters, Nature Mat. 13 (2014) 663. [Back] [Back to Top to top of page]
  51. A. Mandal, K. Ramasesha, L. De Marco and A. Tokmakoff, Collective vibrations of water-solvated hydroxide ions investigated with broadband 2DIR spectroscopy, J. Chem.Phys. 140 (2014) 204508. [Back]
  52. R. Shevchuk, N. Agmon and F. Rao, Network analysis of proton transfer in liquid water, J. Chem. Phys. 140 (2014) 244502. [Back]
  53. C. P. Herrero and R. Raḿırez, Configurational entropy of hydrogen-disordered ice polymorphs, J. Chem. Phys. 140 (2014) 234502; arXiv:1406.5929v1 [physics.chem-ph] 23 Jun 2014. [Back, 2, 3, 4, 5, 6]
  54. Y. Liu and L. Ojamäe, Fingerprints in IR OH vibrational spectra of H2O clusters from different H-bond conformations by means of quantum-chemical computations, J. Mol. Model. 20 (2014) 2281. [Back]
  55. X. Xiao-Min, C. Lan, Z. Wen-Long, L. Long-Fei, Y. Yue-Bin, P. Zhi-Yong and Z. Jin-Xiu, Imaginary part of the surface tension of water, Chinese Phys. Lett. 31 (2014) 076801. [Back, 2]
  56. D. A. Horke, Y.-P. Chang, K. Długołecki and J. Küpper, Separating para and ortho water, Angew. Chem. Int. Ed.53 (2014) 11965-11968; arXiv:1407.2056v1 [physics.chem-ph] 8 Jul 2014. [Back]
  57. N. Kitadai, T, Sawai, R. Tonoue, S. Nakashima, M. Katsura and K. Fukushi, Effects of ions on the OH stretching band of water as revealed by ATR-IR spectroscopy, J. Solution Chem. 43 (2014) 1055-1077. [Back, 2]
  58. C.-W. Liu, F. Wang, L. Yang, X.-Z. Li, W.-J. Zheng and Y. Q. Gao, Stable salt–water cluster structures reflect the delicate competition between ion–water and water–water interactions, J. Phys. Chem. B 118 (2014) 743-751; R.-Z. Li, C.-W. Liu, Y. Q. Gao, H. Jiang, H.-G. Xu and W.-J. Zheng, Microsolvation of LiI and CsI in water: Anion photoelectron spectroscopy and ab initio calculations, J. Am. Chem. Soc. 135 (2013) 5190-5199. [Back]
  59. C. Vega and J. L. F. Abascal, Simulating water with rigid non-polarizable models: a general perspective, Phys. Chem. Chem. Phys. 13 (2011) 19663-19688. [Back]
  60. C. M. Davis Jr and T. A. Litovitz, Two‐state theory of the structure of water, J. Chem. Phys. 42 (1965) 2563-2576. [Back]
  61. K. Arakawa and K. Sasaki, The structure theory of water. I. Two state theory, Bull. Chem. Soc. Japan 42 (1969) 303-308. [Back]
  62. T. T. Duignan, D. F. Parsons and B. W. Ninham, Collins’s rule, Hofmeister effects and ionic dispersion interactions, Chem. Phys. Lett. 608 (2014) 55-59. [Back]
  63. K, Mochizuki, K. Himotoa and M. Matsumoto, Diversity of transition pathways in the course of crystallization into ice VII, Phys. Chem. Chem. Phys. 16 (2014) 16419-16425. [Back]
  64. A. Fernández, Chemical functionality of interfacial water enveloping nanoscale structural defects in proteins, J. Chem. Phys.140 (2014) 221102. [Back]
  65. T. S. Vlasenko, Yu. F. Zabashta, and V. M. Sysoev, Supramolecular structure of aqueous solutions of glucose according to dynamic light scattering data, Russian J. Phys. Chem. A 88 (2014) 1361-1363; Z. Fiz. Khim. 88 (2014) 1180-1182. [Back]
  66. V. Elia, G. Ausanio, A. De Ninno, R. Germano, E. Napoli and M. Niccoli, Experimental evidences of stable water nanostructures at standard pressure and temperature obtained by iterative filtration, WATER 5 (2014) 121-130. [Back]
  67. A. K. Soper, The radial distribution functions of water as derived from radiation total scattering experiments: is there anything we can say for sure? ISRN Physical Chemistry 2013 (2013) 279463, http://dx.doi.org/10.1155/ 2013/279463. [Back]
  68. S. Izadi, R. Anandakrishnan and A. V. Onufriev, Building water models, A different approach, J. Phys. Chem. Lett 5 (2014) 3863-3871; arXiv:1408.1679v1 [physics.chem-ph] 7 Aug 2014. [Back]
  69. I. N. Huszár, Z. Mártonfalvi, A. J. Laki, K. Iván and M. Kellermayer, Exclusion-zone dynamics explored with microfluidics and optical tweezers, Entropy 16 (2014) 4322-4337c
  70. I. Waluyo, D. Nordlund, U. Bergmann, D. Schlesinger, L. G. M. Pettersson and A. Nilsson, A different view of structure-making and structure-breaking in alkali halide aqueous solutions through x-ray absorption spectroscopy, J. Chem. Phys. 140 (2014) 244506. [Back, 2]
  71. V. G. Artemov, A. A. Volkov, Water and ice dielectric spectra scaling at 0 °C, Ferroelectrics 466 (2014) 158-165, doi: 10.1080/00150193.2014.895216; arXiv:1308.1229; V. G. Artemov, A. A. Volkov, A. V. Pronin and A. A. Volkov, Electrical properties of water: a new insight, Biophysics 59 (2014) 520-523; Biofizika 59 (2014) 636-640; A.V. Klyuev, I.A. Ryzhkin, M.I. Ryzhkin, Generalized dielectric permittivity of ice, JETP Lett. 100 (2014) 604-608; Pis’ma v Zhurnal Eksperimental’noi . Teoretich. Fiz. 100 (2014) 683-687; A. A. Volkov, V. G. Artemov and A. V. Pronin, A radically new suggestion about the electrodynamics of water: Can the pH index and the Debye relaxation be of a common origin? Europhys. Lett. 106 (2014) 46004. [Back, 2, 3]
  72. N. H. de Leeuw, C. R. A. Catlow, H. E. King, A. Putnis, K. Muralidharan, P. Deymier, M. Stimpfl and M. J. Drake , Where on Earth has our water come from? Chem. Commun. 46 (2010) 8923-8925. [Back]
  73. C. M. O’D. Alexander, R. Bowden, M. L. Fogel, K. T. Howard, C. D. K. Herd and L. R. Nittler, The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets, Science 337 (2012) 721-723. [Back]
  74. UNICEF and World Health Organization, Progress on drinking water and sanitation 2012 UPDATE (2012). [Back]
  75. Pacific Institute, The World’s Water 8 (2014); The water content of things. [Back] [Back to Top to top of page]
  76. L. Mehta, Water and human development, World Development 59 (2014) 59-69. [Back]
  77. N. Ghaffour, T. M. Missimer and G. L. Amy, Technical review and evaluation of the economics of water desalination: Current and future challenges for better water supply sustainability, Desalination 309 (2013) 197-207. [Back]
  78. L. N. Plummer and E. Busenberg, The solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90 °C, and an evaluation of the aqueous model for the system CaCO3-CO2-H2O, Geochim. Cosmochim. Acta 46 (1982)1011-1040. [Back]
  79. M. H. Sharqawy, J. H. Lienhard and S. M. Zubai, Thermophysical properties of seawater: a review of existing correlations and data, Desalination and Water Treatment 16 (2010) 354-380. [Back]
  80. K.-H. Liu , Y. Zhang , J.-J. Lee , C.-C. Chen , Y.-Q. Yeh , S.-H. Chen and C.-Y. Mou, Density and anomalous thermal expansion of deeply cooled water confined in mesoporous silica investigated by synchrotron X-ray diffraction, J. Chem. Phys. 139 (2013) 064502. [Back]
  81. Z. Wang, K.-H. Liu, L. Harriger, J. B. Leão and S.-H. Chen, Evidence of the existence of the high-density and low-density phases in deeply-cooled confined heavy water under high pressures J. Chem. Phys. 141 (2014) 014501. [Back]
  82. M. M. Reddy, L. N. Plummer and E. Busenberg, Crystal growth of calcite from calcium bicarbonate solutions at constant PCO2 and 25 °C: a test of a calcite dissolution mode, Geochim. Cosmochim. Acta 45 (1981)1281-1289. [Back]
  83. Y. I. Cho, C. Fan, B.-G. Choi , Theory of electronic anti-fouling technology to control precipitation fouling in heat exchangers, Int. Commun. Heat Mass Transfer 24 (1997) 757-770. [Back]
  84. C. Y. Tai, M.-C. Chang andS.-W. Yeh, Synergetic effects of temperature and magnetic field on the aragonite and calcite growth, Chem. Eng. Sci. 55 (2011) 1246-1253. [Back]
  85. A. Stirling and I. Pápai, H2CO3 Forms via HCO3- in water, J. Phys. Chem. B, 114 (2010) 16854-16859. [Back]
  86. M. Shahid and R. M. Pashley, The use of air bubbles to desalinate seawater without boiling, Aqua Incognita: why ice floats on water and Galileo 400 years on, Ed. P. Lo Nostro and B. W. Ninham, ISBN: 9781925138214 (Connor Court, Ballarat, 2014) pp 350-366. [Back]
  87. X. Zhang, H. Lhuissier, C, Sun and D. Lohse, Surface nanobubbles nucleate microdroplets, Phys. Rev. Lett. 112 (2014) 144503. [Back]
  88. R. J. Cooper, S. Heiles, M. J. DiTucci and E. R. Williams, Hydration of guanidinium: second shell formation at small cluster size, J. Phys. Chem. 118 (2014) 5657-5666; S. Heiles, R. J. Cooper, M. J. DiTucci and E. R. Williams, Hydration of guanidinium depends on its local environment, Chem. Sci. 6 (2015) 3420. [Back]
  89. L. G. M. Pettersson and A. Nilsson, The structure of water; from ambient to deeply supercooled, J. Non-Cryst. Solids 407 (2015) 399-417; this paper is somewhat challenged by G. P. Johari and J. Teixeira, Thermodynamic analysis of the two-liquid model for anomalies of water, HDL−LDL fluctuations, and liquid−liquid transition, J. Phys. Chem. B 119 (2015) 14210-14220. [Back, 2]
  90. M. D. Baer, D. J. Tobias and C. J. Mundy, Investigation of interfacial and bulk dissociation of HBr, HCl, and HNO3 using density functional theory-based molecular dynamics simulations, J. Phys. Chem. C (2014) Article ASAP doi: 10.1021/jp5062896. [Back, 2]
  91. A. T. Ayoub, J. Tuszynski and M. Klobukowski, Estimating hydrogen bond energies: comparison of methods, Theor. Chem. Acc. 133 (2014) 1520; R. F. W. Bader, A quantum theory of molecular structure and its applications, Chem. Rev. 91 (1991) 893-928. [Back]
  92. T. Sadhukhan, I.A. Latif and S. N. Datta, Solvation of CO2 in water: Effect of RuBP on CO2 concentration in bundle sheath of C4 plants, J. Phys. Chem. B 118 (2014) 8782-8791. [Back]
  93. M. J. Shultz, P. J. Bisson and A. Brumberg, Best face forward: crystal-face competition at the ice–water interface, J. Phys. Chem. B 118 (2014) 7972-7980. [Back]
  94. Y. Koga, P. Westh, K. Yoshida, A. Inaba and Y. Nakazawa, Gradual crossover in molecular organization of stable liquid H2O at moderately high pressure and temperature, AIP Advances 4 (2014) 097116. [Back, 2]
  95. A. Shalit, F. Perakis and P. Hamm, Two-dimensional infrared spectroscopy of isotope-diluted low density amorphous ice, J. Phys. Chem. B 117 (2013) 15512-15518. [Back]
  96. M. Odelius, Information content in O[1s] K-edge X-ray emission spectroscopy of liquid water, J. Phys. Chem. A.113 (2009) 8176-8181; Z. Yin, I. Rajkovic, K. Kubicek, W. Quevedo, A. Pietzsch, P. Wernet, A. Föhlisch and S. Techert, Probing the Hofmeister effect with ultrafast core−hole spectroscopy, J. Phys. Chem. B 118 (2014) 9398-9403. [Back]
  97. J. Werner, E. Wernersson, V. Ekholm, N. Ottosson, G. Ohrwall, J. Heyda, I. Persson, J. Söderström, P. Jungwirth and O. Björneholm, Surface behavior of hydrated guanidinium and ammonium ions: a comparative study by photoelectron spectroscopy and molecular dynamics, J. Phys. Chem. B. 118 (2014) 7119-7127. [Back]
  98. I. V. Stiopkin, C. Weeraman, P. A. Pieniazek, F. Y. Shalhout, J. L. Skinner and A. V. Benderskii, Hydrogen bonding at the water surface revealed by isotopic dilution spectroscopy, Nature 474 (2011) 192-195; P. Jungwirth, Water's wafer-thin surface, Nature 474 (2011) 168-169. [Back]
  99. A. Kubíčková, T. Křížek, P. Coufal, E. Wernersson, J. Heyda and P. Jungwirth, Guanidinium cations pair with positively charged arginine side chains in water, J. Phys. Chem. Lett. 2 (2011) 1387-1389. [Back]
  100. K. A. Dill, K. Ghosh and J D. Schmit, Physical limits of cells and proteomes, PNAS U S A. 108 (2011) 17876-17882. [Back] [Back to Top to top of page]



Home | Site Index | Site Map | Search | LSBU | Top


This page was established in 2014 and last updated by Martin Chaplin on 15 August, 2017

Creative Commons License
This work is licensed under a Creative Commons Attribution
-Noncommercial-No Derivative Works 2.0 UK: England & Wales License