Water site headerMasthead Island, Great Barrier Reef Print-me keygo to Water Visitor Book contributions
Go to my page Water Structure and Science

Water Structure and Science References 2201 - 2300

 

  1. F. Mallamace, C. Corsaro, D. Mallamace, S. Vasi, C. Vasi and H. E. Stanley, Thermodynamic properties of bulk and confined water, J. Chem. Phys. 141 (2014) 18C504; F. Mallamace, C. Corsaro, D. Mallamace, S. Vasi, C. Vasi and H. E. Stanley, Erratum: Thermodynamic properties of bulk and confined water, [J. Chem. Phys. 141 (2014) 18C504] J. Chem. Phys. 141 (2014) 249903. [Back]
  2. E. Ronca, L. Belpassi and F. Tarantelli, A quantitative view of charge transfer in the hydrogen bond: the water dimer case, ChemPhysChem 15 (2014) 2682-2687. [Back]
  3. L. I. Cleeves, E. A. Bergin, C. M. O’D. Alexander, F. Du, D. Graninger, K. I. Öberg and T. J. Harries, The ancient heritage of water ice in the solar system, Science 345 (2014) 1590-1593. [Back]
  4. A. V. Ildyakov, A. Yu. Manakov, E. Ya. Aladko, V. I. Kosyakov and V. A. Shestakov, Solubility of helium in ice Ih at pressures up to 2000 bar, J. Phys. Chem. B 117 (2013) 7756-7762. [Back]
  5. A. V. Ildyakov and A. Yu. Manakov, Solubility of hydrogen in ice Ih at pressures up to 8 MPa, Int. J. Hydrogen Energy 39 (2014) 18958-18961. [Back]
  6. Y. Marcus, Concentration dependence of ionic hydration numbers, J. Phys. Chem. B 118 (2014) 10471-10476. [Back]
  7. A. I. Konovalov, I. S. Ryzhkina, L. I. Murtazina and Yu. V. Kiseleva, Forming the nanosized molecular assemblies (nanoassociates) is a key to understand the properties of highly diluted aqueous solutions, Biophysics 59 (2014) 341-346; Biofizika 59 (2014) 421-427; A. I. Konovalov and I. S. Ryzhkina, Formation of nanoassociates as a key to understanding of physicochemical and biological properties of highly dilute aqueous solutions, Russ. Chem. Bull. Int. Ed. 63 (2014) 1-14; S. M. Pershin, Konovalov effect in low-concentration aqueous solutions: the role of ortho/para spin isomers, Dokl. Phys. Chem. 455 (2014) 37-40; Dokl. Akad. Nauk 455 (2014) 44-47. [Back]
  8. H. Parmar, M. Asada, Y. Kanazaw, Y. Asakuma, C.M. Phan, V. Pareek and G. M. Evans, Influence of microwaves on the water surface tension, Langmuir 30 (2014) 9875-9879;M. T. Amiri and M. C. Amiri, Comment on “Influence of microwaves on the water surface tension”, Langmuir 31 (2015) 10931-10932; H. Parmar, M. Asada, Y. Kanazaw, Y. Asakuma, C.M. Phan, V. Pareek and G. M. Evans, Reply to comment on “Influence of microwaves on the water surface tension”, Langmuir 31 (2015) 10933-10934. [Back]
  9. T. Loerting, V. Fuentes-Landete, P. H. Handle a, M. Seidl, K. Amann-Winkel, C. Gainaru and R. Böhmer, The glass transition in high-density amorphous ice, J. Non-Cryst. Solids 407 (2014) 423-430 . [Back]
  10. B. E. Rocher-Casterline, L. C. Ch’ng, A. K. Mollner and H. Reisler, Determination of the bond dissociation energy (D0) of the water dimer, (H2O)2 , by velocity map imaging, J. Chem. Phys. 134 (2011) 211101 (b) L. C. Ch’ng, A. K. Samanta, G. Czakó, J. M. Bowman and H. Reisler, Experimental and theoretical investigations of energy transfer and hydrogen-bond breaking in the water dimer, J. Am. Chem. Soc. 134 (2012) 15430-15435. [Back]
  11. Y. Koga, Two-dimensional characterization of the effect of solute on H2O: A thermodynamic probing methodology, 205 J. Mol. Liq. (2015) 31-36 [Back, 2, 3]
  12. T. Morita, P. Westh, K. Nishikawa, and Y. Koga, How much weaker are the effects of cations than those of anions? The effects of K+ and Cs+ on the molecular organization of liquid H2O, J. Phys. Chem. B 118 (2014) 8744-8749. [Back]
  13. F. Alimi, M. Tlili, M. Ben Amor, C. Gabrielli and G. Maurin, Influence of magnetic field on calcium carbonate precipitation, Desalination 206 (2007) 163-168. [Back]
  14. M. Taghipoor, G. Barles, C. Georgelin, J. R. Licois and P. Lescoat, Digestion modelling in the small intestine: Impact of dietary fibre, Math. Biosci. 258 (2014) 101-112.
  15. A. Picard, R. S. Davis, M. Gläser and K. Fujii, Revised formula for the density of moist air (CIPM-2007) Metrologia 45 (2008) 149-155. [Back, 2]
  16. Optum, Effectiveness of homeopathy for clinical conditions : Evaluation of the evidence (2013); NHMRC draft Information Paper: Evidence on the effectiveness of homeopathy for treating health conditions (2014). [Back]
  17. E. J. W. Verwey and J. Th. G. Overbeek, Theory of the stability of lyophobic colloids, (Elsevier, New York, 1948). [Back]
  18. V. Holten, J. V. Sengers and M. A. Anisimova, Equation of state for supercooled water at pressures up to 400 MPa, J. Phys. Chem. Ref. Data 43 (2014) 043101 ;arXiv:1403.6777v2 [cond-mat.stat-mech] 8 Sep 2014; [IAPWS]. [ Back , 2, 3]
  19. M. Yamabhai, S. Chumseng, K. Yoohat and W. Srila, Diverse biological effects of electromagnetic-treated water, Homeopathy 103 (2014) 186-192. [Back]
  20. D. S. Smith, C. H. Mannheim and S. G. Gilbert, Water sorption isotherms of sucrose and glucose by inverse gas chromatography, J. Food Sci. 46 (1981) 1051-1053; F. De Vito, B. Veytsman, P. Painter and J. L. Kokini, Simulation of the effect of hydrogen bonds on water activity ofglucose and dextran using the Veytsman model, Carbohydr. Polymers 117 (2015) 236-246. [Back]
  21. R. M. Key, A. Kozyr, C. L. Sabine, K. Lee, R. Wanninkhof, J. L. Bullister, R. A. Feely, F. J. Millero, C. Mordy, and T.-H. Peng, A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP), Global Biogeochemical Cycles 18 (2004) GB4031. [Back]
  22. Intergovernmental Panel on Climate Change, Climate change 2013, The physical science basis (2013) ISBN 978-92-9169-138-8. [Back]
  23. J. Li, H.-F. Zhang, G.-Q. Shao, B.-L. Wu and S.-X. Ouyang, Negative differential resistance: Another banana? Europhys. Lett. 108 (2014) 27005; arXiv:1409.6438 [cond-mat]. [Back, 2]
  24. R. A. Robinson and R. H. Stokes, Electrolyte Solutions, 2nd Rev. Ed., (Butterworth, London 1970) pp. 483-485, 491-496. [Back, 2]
  25. A. Salis and B. W. Ninham, Models and mechanisms of Hofmeister effects in electrolyte solutions, and colloid and protein systems revisited. Chem Soc Rev. 43 (2014 ) 7358-7377. [Back, 2] [Back to Top to top of page]
  26. R. H. Tromp, M. Vis, B. H. Erné and E. M. Blokhuis, Composition, concentration and charge profiles of water-water interfaces, J. Phys.: Condens. Matter 26 (2014) 464101. [Back]
  27. X. Zhang, Y. Huang, Z. Ma, Y. Zhou, J. Zhou, W. Zheng, Q. Jiange and C. Q. Sun, Hydrogen-bond memory and water-skin supersolidity resolving the Mpemba paradox, Phys. Chem. Chem. Phys. 16 (2014) 22995-23002; Y. Huang, X. Zhang, Z. Ma, Y. Zhou, W. Zheng, J. Zhou, C. Q. Sun, Hydrogen-bond relaxation dynamics: Resolving
    mysteries of water ice, Coord. Chem. Rev. 285 (2015) 109-165. [Back, 2]
  28. Y. Peng, J. M. J. Swanson, S.-g. Kang, R. Zhou and G. A. Voth, Hydrated excess protons can create their own water wires J. Phys. Chem. B . Phys. Chem. B 119 (2015) 9212-9218. [Back]
  29. M. Morita, H. Takahashi, S. Yabushita and K. Takahashi, Why does the IR spectrum of hydroxide stretching vibration weaken with increase in hydration? Phys. Chem. Chem. Phys. 16 (2014) 23143-23149. [Back]
  30. R. K. Lam, A. H. England, A. T. Sheardy, O. Shih, J. W. Smith, A. M. Rizzuto, D. Prendergast and R. J. Saykally, The hydration structure of aqueous carbonic acid from X-rayabsorption spectroscopy, Chem. Phys. Lett. 614 (2014) 282-286. [Back]
  31. M. N. Zhadin, B. V. Bakhare and N. V. Bobkova, Mechanism of action of combined extremely weak magnetic field
    on aqueous solution of amino acid, Biophysics 59 (2014) 677-679; Biofizika 59 (2014) 829-832. [Back]
  32. N. P. Palmina, E. L. Maltseva and T. E. Chasovskaya, Effect of dilute solutions of biologically active substances on cell membranes, Biophysics 59 (2014) 577-587; Biofizika 59 (2014) 704-716. [Back]
  33. G. Maroulis, Hyperpolarizability of H2O revisited: accurate estimate of the basis set limit and the size of electron correlation effects, Chem. Phys. Lett. 289 (1998) 403-411. [Back]
  34. T. Vilarifio and M. E. Sastre de Vicente, Theoretical calculations of the ionic strength dependence of the ionic product of water based on a mean spherical approximation, J. Solution Chem. 26 (1997) 833-846. [Back]
  35. K.-I. Murata, H. Tanaka, Liquid-liquid transition without macroscopic phase separation in a water glycerol mixture, Nature Mater. 11 (2012) 436-443. [Back]
  36. F. Caupin, Escaping the no man's land: Recent experiments on metastable liquid water, J. Non-Cryst. Solids 407(2014) 441-448. [Back, 2
  37. V. C. Nibali and M. Havenith, New insights into the role of water in biological function: studying solvated biomolecules using terahertz absorption xpectroscopy in conjunction with molecular dynamics simulations, J. Am. Chem. Soc. 136 (2014) 12800-12807. [Back, 2
  38. C. M. Witta, M. Bluth, H. Albrecht, T. E. R. Weißhuhn, S. Baumgartner and S. N. Willich, The in vitro evidence for an effect of high homeopathic potencies—–A systematic review of the literature, Compl. Therap. Med. 15 (2007) 128-138. [Back]
  39. D. Bandyopadhyay, S. Mohan, S. K. Ghosh, and N. Choudhury, Molecular dynamics simulation of aqueous urea solution: is urea a structure breaker? J. Phys. Chem. B, 118 (2014) 11757-11768. [Back]
  40. V. A. Sirotkin and A. V. Khadiullina, Gibbs energies, enthalpies, and entropies of water and lysozyme at the inner edge of excess hydration, J. Chem. Phys. 139 (2013) 075102. [Back]
  41. A. V. Shavlov, I. V. Sokolov, V. L. Khazan and S. N. Romanyuk, Viscosity of water fog, Phys. Scr. 89 (2014) 125402. [Back]
  42. L. Fang and J. M. Catchmark, Structure characterization of native cellulose during dehydration and rehydration, Cellulose 21 (2014) 3951-3963. [Back]
  43. P. Parkkinen , S. Riikonen and L. Halonen, Ice XI: Not that ferroelectric, J. Phys. Chem. C 118 (2014) 26264-26275. [Back]
  44. (a) T. Okada, T. Iitaka T. Yagi and K. Aoki, Electrical conductivity of ice VII, Sci. Rep. 4 (2014) 5778; doi:10.1038/ srep05778; (b) N. Noguchi and T. Okuchi, Self-diffusion of protons in H2O ice VII at high pressures: Anomaly around 10 GPa, J. Chem. Phys. 144 (2016) 234503. [Back]
  45. H. Batzer and U. T. Kreibich, Influence of water on thermal transitions in natural polymers and synthetic polyamides, Polymer Bull. 5 (1981) 585-590. [Back, 2
  46. G. W. Koch, S. C. Sillett, G. M. Jennings and S. D. Davis, The limits to tree height. Nature 428 (2004) 851-854. [Back]
  47. J. A. Fournier, C. T. Wolke, C.r J. Johnson, M. A. Johnson, N. Heine, S. Gewinner, W. Schöllkopf, T. K. Esser, M. R. Fagiani, H. Knorke and K. R. Asmis, Site-specific vibrational spectral signatures of water molecules in the magic H3O+(H2O)20 and Cs+(H2O)20 clusters,PNAS 111 (2014) 18132-18137; J. A. Fournier, C. J. Johnson, C. T. Wolke, G. H. Weddle, A. B. Wolk and M. A. Johnson, Vibrational spectral signature of the proton defect in the three-dimensional H+(H2O)21 cluster, Science 344 (2014) 1009-1012. [Back]
  48. K. E. Riley, C. L. Ford Jr. and K. Demouchet, Comparison of hydrogen bonds, halogen bonds, C-H····pi interactions, and C-X···pi interactions using high-level ab initio methods, Chem. Phys. Lett. 621 (2015) 165-170. [Back, 2
  49. K. Tompa, M. Bokor, T. Verebélyi and P. Tompa, Water rotation barriers on protein molecular surfaces, Chem. Phys. 448 (2014) 15-25. [Back, 2
  50. K. T. Nguyen, A. V. Nguyen and G. M. Evans, Interactions between halide anions and interfacial water molecules in relation to the Jones–Ray effect, Phys. Chem. Chem. Phys. 16 (2014) 24661-24665. [Back] [Back to Top to top of page]
  51. B. Gundlach and J. Blum, The stickiness of micrometer-sized water-ice particles, Astrophys. J. 798 (2015) 34; arXiv:1410.7199v1 [astro-ph.EP] 27 Oct 2014. [Back]
  52. A. Falenty, T. C. Hansen and W. F. Kuhs, Formation and properties of ice XVI obtained by emptying a type sII clathrate hydrate, Nature 516 (2014) 231-233. [Back, 2]
  53. G. Graziano, On the mechanism of cold denaturation, Phys. Chem. Chem. Phys. 16 (2014) 21755-21767. [Back]
  54. I. Bergonzi, L. Mercury, J.-B. Brubach and P. Roy, Gibbs free energy of liquid water derived from infrared measurements, Phys. Chem. Chem. Phys. 16 (2014) 24830-24840. [Back, 2]
  55. M. Ahmed, V. Namboodiri, A. K. Singh, and J. A. Mondal, On the intermolecular vibrational coupling, hydrogen bonding, and librational freedom of water in the hydration shell of mono- and bivalent anions, J. Chem. Phys. 141 (2014) 164708. [Back, 2]
  56. T. P. Pollard and T. L. Beck, The thermodynamics of proton hydration and the electrochemical surface potential of water, J. Chem. Phys. 141 (2014) 18C512. [Back, 2]
  57. A. Bogdan and T. Loerting, Phase separation during freezing upon warming of aqueous solutions, J. Chem. Phys. 141 (2014) 18C533. [Back]
  58. J. D. Slinker, N. B. Muren, S. E. Renfrew and J. K. Barton, DNA charge transport over 34 nm, Nature Chem. 3 (2011) 228-233; P. A. Sontz, T. P. Mui, J. O. Fuss, J. A. Tainer, and J. K. Barton, DNA charge transport as a first step in coordinating the detection of lesions by repair proteins, PNAS 109 (2012) 1856-1861; R. F. Service, Live wire Do cells use electricity to repair DNA? Science 346 (2014) 1284-1287. [Back]
  59. E. Pennisi, Water's tough skin, Science 343 (2014) 1194-1197. [Back]
  60. C. Pérez, M. T. Muckle, D. P. Zaleski, N. A. Seifert, B. Temelso, G. C. Shields, Z. Kisiel and B. H. Patel, Structures of cage, prism, andbook isomers of water hexamer from broadband rotational spectroscopy, Science 336 (2012) 897-901. [Back]
  61. H.-Y. Zhao, J. Wang, X.-J. Su, D.-B. Zhang, and Y. Liu, Ice carbons J. Phys. Chem. C 118 (2014) 27502-27508; Q. Zhu, A. R. Oganov, M. A. Salvadó, P. Pertierra, and A. O. Lyakhov, Denser than diamond: Ab initio search for superdense carbon allotropes, Phys. Rev. B 83 (2011) 193410, Erratum Phys. Rev. B 83 (2011) 239902. [Back]
  62. P. W. Rosenkranz, A model for the complex dielectric constant of supercooled liquid water at microwave frequencies, IEEE Trans. Geosci. Remote Sensing 53 (2015) 1387-1393. [Back]
  63. F. E. G. Güner, J. Wåhlin, M. Hinge and S. Kjelstrup, The temperature jump at a growing ice-water interface, Chem. Phys. Lett. 622 (2015) 15-19. [Back]
  64. A. Rastogi, A. K. Ghosh and S. J. Suresh, Hydrogen bond interactions between water molecules in bulk liquid, near electrode surfaces and around ions, In Thermodynamics - Physical Chemistry of Aqueous Systems, J. C. Moreno-Piraján (Ed.) (2011), ISBN: 978-953-307-979-0. InTech, pp 351-364. [Back]
  65. T. Sugiyama and T. Yoshioka, Functional difference between deuterated and protonated macromolecules, In Protein Structure, E. Faraggi (Ed.) (2012), ISBN: 978-953-51-0555-8, InTech, pp 291-306. [Back]
  66. P. Fenter and S. S. Lee, Hydration layer structure at solid–water interfaces, MRS Bulletin 39 (2014) 1056-1061. [Back]
  67. C. Gainaru, A. L. Agapov, V. Fuentes-Landete, K. Amann-Winkel, H. Nelson, K. W. Köster, A. I. Kolesnikov, V. N. Novikov, R. Richert, R. Böhmer, T. Loerting and A. P. Sokolov, Anomalously large isotope effect in the glass transition of water, PNAS 111 (2014) 17402-17407. [Back]
  68. D. P. Shelton, Long-range orientation correlation in water, J. Chem. Phys.141 (2014) 224506. [Back, 2]
  69. H. Miyamoto , U. Schnupf and J. W. Brady, Water structuring over the hydrophobic surface of cellulose, J. Agric. Food Chem. 62 (2014) 11017-11023. [Back]
  70. L .B. Railsback, An earth scientist's periodic table of the elements and their ions. Geology 31 (2003) 737-740. [Back]
  71. L. B. Boinovich and A. M. Emelyanenko, Experimental determination of the surface energy of polycrystalline ice, Doklady Phys. Chem. 459 (2014) 198-202; Doklady Akad. Nauk 459 (2014) 702-706. [Back]
  72. P. L. Geissler, Temperature dependence of inhomogeneous broadening: on the meaning of isosbestic points, J. Am. Chem. Soc. 127 (2005) 14930-14935. [Back]
  73. L. B. Skinner, C. J. Benmore, J. C. Neuefeind and J. B. Parise, The structure of water around the compressibility minimum, J. Chem. Phys. 141 (2014) 214507. [Back]
  74. B. Sulbarán, G. Toriz, G. G. Allan, G. H. Pollack and E. Delgado, The dynamic development of exclusion zones on cellulosic surfaces, Cellulose 21 (2014) 1143-1148. [Back]
  75. S. V. Gudkov, V. I. Bruskov, M. E. Astashev, A. V. Chernikov, L. S. Yaguzhinsky and S. D. Zakharov, Oxygen-dependent auto-oscillations of water luminescence triggered by the 1264 nm radiation, J. Phys. Chem. B 115 (2011) 7693-7698; S. V. Gudkov, M. E. Astashev, V. I. Bruskov, V. A. Kozlov, S. D. Zakharov and N. F. Bunkin, Self-oscillating water chemiluminescence modes and reactive oxygen species generation induced by laser irradiation; effect of the exclusionzone created by Nafion, Entropy 16 (2014) 6166-6185. [Back] [Back to Top to top of page]
  76. R. T. Mathie, S. M. Lloyd, L. A. Legg, J. Clausen , S. Moss, J. R. T. Davidson and I. Ford, Randomised placebo-controlled trials of individualised homeopathic treatment: systematic review and meta-analysis, Systematic Reviews 3 (2014) 142. [Back]
  77. N. M. Levinson and S. G. Boxer, A conserved water-mediated hydrogen bond network defines bosutinib’s kinase selectivity, Nature Chem. Biol. 10 (2014) 127-132. [Back]
  78. J. J. Virtanen, T. R. Sosnick and K. F. Freed, Ionic strength independence of charge distributions in solvation of biomolecules, J. Chem. Phys. 141 (2014) 22D503. [Back]
  79. R. B. Best, C. Miller and J. Mittal, Role of solvation in pressure-induced helix stabilization R. B. Best, C. Miller and J. Mittal, J. Chem. Phys. 141 (2014) 22D522. [Back, 2]
  80. H. Abramczyk, B. Brozek-Pluska, M. Krzesniak, M. Kopec and A. Morawiec-Sztander, The cellular environment of cancerous human tissue. Interfacial and dangling water as a ‘‘hydration fingerprint’’, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 129 (2014) 609-623. [Back, 2]
  81. K.-C. Tan, W. Ho, J. I. Katz, S.-J. Feng, A study of the occurrence of supercooling of water, arxiv.org/abs/ 1412.8683 12 Dec. 2014. [Back]
  82. R. Edelman, I. Kusner, R. Kisiliak, S. Srebnik andY. D. Livney, Y.D., Sugar stereochemistry effects on water structure and on protein stability: the templating concept, Food Hydrocolloids 48 (2015) 27-37. [Back]
  83. K. A. Kvenvolden, Gas-hydrates - geological perspectives and global change, Rev. Geophys. 31 (1993) 173-187. [Back]
  84. M. Garcia-Ratés, P. Miró, A. Müller, C. Bo and J. Bonet Avalos, Encapsulated water inside Mo132 capsules: the role of long-range correlations of about 1 nm, J. Phys. Chem. C 118 (2014) 5545-5555. [Back]
  85. V. V. Vasisht, J. Mathew, S. Sengupta and S. Sastry, Nesting of thermodynamic, structural, and dynamic anomalies in liquid silicon, J. Chem.Phys. 141 (2014) 124501. [Back]
  86. L. Wang, M. Ceriotti and T. E. Markland, Quantum fluctuations and isotope effects in ab initio descriptions of water, J. Chem.Phys. 141 (2014) 104502. [Back, 2]
  87. X. Meng, J. Guo, J. Peng, J. Chen, Z. Wang, J.-R. Shi, X.-Z. Li, E.-G. Wang and Y. Jiang, Direct visualization of concerted proton tunnelling in a water nanocluster, Nature Phys.. 11 (2015) 235-239. [Back]
  88. S. Sen and H. P. Voorheis, Protein folding: Understanding the role of water and the low Reynolds number environment as the peptide chain emerges from the ribosome and folds, J. Theor. Biol. 363 (2014) 169-187 [Back]
  89. V. Shilpi, S. P. Kaur and C. N. Ramachandran, Revisiting the structural pattern and the stability of (H2O)20 clusters using the dispersion corrected density functional method, Chem. Phys. Lett. 626 (2015) 39-42. [Back]
  90. M. J. Ryding, R. Izsák, P. Merlot, S. Reine, T. Helgaker and E. Uggerud, Geometry of the magic number H+(H2O)21 water cluster by proxy, Phys.Chem.Chem.Phys. 17 (2015) 5466-5473. [Back]
  91. C. Cheng, M. Guy, A. Narduzzo and K. Takashina, The Leidenfrost maze, Eur. J. Phys. 36 (2015) 035004. [Back]
  92. L. B. da Silva, Structural and dynamical properties of water confined in carbon nanotubes, J. Nanostruct. Chem. 4 (2014) 104. [Back]
  93. M. A. Metrick II and G. MacDonald, Hofmeister ion effects on the solvation and thermal stability of model proteins lysozyme and myoglobin, Colloids Surfaces A: Physicochem. Eng. Aspects 469 (2015) 242-251. [Back]
  94. J. Nielsen, M. B. Andreasen, M. Pedersen and M. K. Rasmussen, Towards fast in-lne measurement of water activity, Int J Thermophys 36 (2015) 577-588. [Back]
  95. A. V. Drozdov and T. P. Nagorskaya, The quasi-periodic character of intermolecular interactions in water, Biophys. 59 (2014) 973-985; Biofizika 59 (2014) 1195-1208. [Back]
  96. O. Carugo, Structure and function of water molecules buried in the protein core, Curr. Protein Pept. Sci. 16 (2015) 259-265. [Back]
  97. C. Drechsel-Grau and D. Marx, Tunnelling in chiral water clusters: Protons in concert, Nature Physics 11 (2015) 216-218. [Back]
  98. G. Pyrgiotakis, A. Vasanthakumar, Y. Gao, M. Eleftheriadou, E. Toledo, A. DeAraujo, J. McDevitt, T. Han, G. Mainelis, R. Mitchell and P. Demokritou, Inactivation of foodborne microorganisms using engineered water nanostructures (EWNS), Environ. Sci. Technol. (2015) ASAP doi: 10.1021/es505868a. [Back]
  99. L.-P. Wang, T. J. Martinez and V. S. Pande, Building force fields: An automatic, systematic, and reproducible
    approach, J. Phys. Chem. Lett. 5 (2014) 1885-1891. [Back]
  100. F. Yen and Z. Chi , Proton ordering dynamics of H2O ice, Phys.Chem.Chem.Phys. 17 (2015) 12458-12461; arxiv.org/abs/1503.01830. [Back, 2] [Back to Top to top of page]

 

 

Home | Site Index | Site Map | Search | LSBU | Top

 

This page was established in 2014 and last updated by Martin Chaplin on 15 August, 2017


Creative Commons License
This work is licensed under a Creative Commons Attribution
-Noncommercial-No Derivative Works 2.0 UK: England & Wales License