Water site headerMasthead Island, Great Barrier Reef Print-me keygo to Water Visitor Book contributions
 Go to my page Water Structure and Science

Water Structure and Science References 2701 - 2800


  1. M. Michelin-Jamois, C. Picard, G. Vigier and E. Charlaix, Giant osmotic pressure in the forced wetting of hydrophobic nanopores, Phys. Rev. Lett. 115 (2015) 036101. [Back]
  2. B. Sulbarán, G. Toriz, G. G. Allan, G. H. Pollack and E. Delgado, The dynamic development of exclusion zones on cellulosic surfaces, Cellulose 21 (2014) 1143-1148. [Back]
  3. T. A. L. Burgo, F. Galembeck and G. H. Pollack, Where is water in the triboelectric series? J. Electrostatics 80 (2016) 30-33. [Back]
  4. K. W Kimura and G. H. Pollack, Particle displacement in aqueous suspension arising from incident radiant energy, Langmuir (2015) Article in press, doi: 10.1021/la5048535. [Back]
  5. M. J. Stevens and K. Kremer, The nature of flexible linear polyelectrolytes in salt free solution: A molecular dynamics study, J. Chem. Phys. 103 (1995) 1669-1690. [Back]
  6. A. Nilsson, S. Schreck, F. Perakis and L. G. M. Pettersson, Probing water with X-ray lasers, Adv. Physi X, 1:2 (2016) 226-245. [Back]
  7. A. P. Nutman, V. C. Bennett, C. R. L. Friend, M. J. Van Kranendonk and A. R. Chivas, Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures, Nature (2016) Article in press, doi:10.1038/nature19355. [Back]
  8. G. Cooper, and A. C. Rios, Enantiomer excesses of rare and common sugar derivatives in carbonaceous meteorites, PNAS (2016) Article in press, doi/10.1073/pnas.1603030113. [Back]
  9. A. H. Ayyad, Test of the des Cloiseaux law by membrane osmometry on pullulan, Macromol. Rapid Commun. 22, (2001) 652-653. [Back]
  10. (a) J. des Cloizeaux, The Lagrangian theory of polymer solutions at intermediate concentrations, J. Phys. France 36 (1975) 281-291;(b) J. A. Cohen, R. Podgornik, P. L. Hansen and V. A. Parsegian, A phenomenological one-parameter equation of state for osmotic pressures of PEG and other neutral flexible polymers in good solvents, J. Phys. Chem. B 113 (2009) 3709-3714; (c) L. Wang and V. A. Bloomfield, Osmotic pPressure ofpolyelectrolytes without added salt, Macromolecules 23 (1990) 804-809. [Back]
  11. S. Chatterjee, A symbiotic view of the origin of life at hydrothermal impact crater-lakes, Phys.Chem.Chem.Phys. 18 (2016) 20033-20046. [Back]
  12. L. Comez, M. Paolantoni, P. Sassi, S. Corezzi, A. Morresi and D. Fioretto, Molecular properties of aqueous solutions: a focus on the collective dynamics of hydration water, Soft Matter 12 (2016) 5501-5514. [Back]
  13. C. J. Sahle, M. A. Schroer, I. Juurinend and J. Niskanend, Influence of TMAO and urea on the structure
    of water studied by inelastic X-ray scattering, Phys. Chem. Chem. Phys. 18 (2016) 16518-16526; D. R. Canchi and A. E. Garcíıa, Cosolvent effects on protein stability, Annu. Rev. Phys. Chem. 64 (2013) 273-293. [Back]
  14. E. Y.. Gatapova, I. A. Graur, O. A. Kabov, V. M. Aniskin, M. A. Filipenko, F. Sharipov and L. Tadrist, The temperature jump at water – air interface during evaporation, Int.J. Heat Mass Transfer 104 (2017) 800-812. [Back, 2]
  15. I. Bergonzi, L.l Mercury, P. Simon, F. Jamme and K. l Shmulovich, Oversolubility in the microvicinity of solid–solution interfaces, Phys. Chem. Chem. Phys. 18 (2016) 14874-14885. [Back]
  16. D. J. Huggins, Studying the role of cooperative hydration in stabilizing folded protein states, J. Struct. Biol. (2016) Article in press, http://dx.doi.org/10.1016/j.jsb.2016.09.003. [Back]
  17. E. L. Lindh, M. Bergenstråhle-Wohlert, C. Terenzi, L. Salmén and I. Furó, Nonexchanging hydroxyl groups on the surface of cellulose fibrils: The role of interaction with water, Carbohydr. Res.(2016) Article in press doi: 10.1016/j.carres.2016.09.006. [Back]
  18. R. K. Lam, J. W. Smith and R. J. Saykally, Communication: Hydrogen bonding interactions in water-alcohol mixtures from Xray absorption spectroscopy, J. Chem. Phys. 144 (2016) 191103. [Back]
  19. W. T. S. Cole, R. S. Fellers, M. R. Viant, C. Leforestier and R. J. Saykally, Far-infrared VRT spectroscopy of the water dimer: Characterization of the 20 μm outof- plane librational vibration, J. Chem. Phys. 143 (2015) 154306. [Back]
  20. F. S. Cipcigan, V. P. Sokhan, J. Crain and G. J. Martyna, Electronic coarse graining enhances the predictive power of molecular simulation allowing challenges in water physics to be addressed. J. Comp. Phys. (2016) Article in press, dx.doi.org/10.1016/j.jcp.2016.08.030; arXiv:1609.03077v1 [physics.chem-ph] 10 Sep 2016. [Back]
  21. A. Azevedo, R. Etchepare, S. Calgaroto and J. Rubio, Aqueous dispersions of nanobubbles: Generation, properties and features, Minerals Eng. 94 (2016) 29-37. [Back]
  22. S. Izadi and A. V. Onufriev, Accuracy limit of rigid 3-point water models, J. Chem. Phys.145 (2016) 074501. [Back]
  23. M. Senske, D. Constantinescu-Aruxandei, M. Havenith, C. Herrmann, H. Weingärtner and S. Ebbinghaus, The temperature dependence of the Hofmeister series: thermodynamic fingerprints of cosolute–protein interactions, Phys. Chem. Chem. Phys.(2016) Article in press, doi: 10.1039/c6cp05080h. [Back]
  24. M. V. Kirov, Antisymmetry and stability of water systems. I. Planar cyclic clusters, M. V. Kirov, J. Struct. Chem. 48 (2007) 81-87. [Back]
  25. A. C. Fogarty and D. Laage, Water dynamics in protein hydration shells: The molecular origins of the dynamical perturbation, J. Phys. Chem. B 118 (2014) 7715−7729. [Back]  [Back to Top to top of page]
  26. M. Mandziuk, On the tunneling splitting in a cyclic water trimer, Chem. Phys. Lett. 661 (2016) 263-268. [Back, 2]
  27. L. Zhao, K. Ma and Z. Yang, Changes of water hydrogen bond network with different externalities, Int. J. Mol. Sci. 16 (2015) 8454-8489. [Back, 2]
  28. V. V. Goncharuk, E. A. Orekhova, M. D. Skil’skaya and A. A. Kavitskaya, The use of cryoscopy method for determination of freezing temperature of waters having different content of deuterium, J. Water Chem. Technol. 37 (2015) 103-107; originally in Khim. Tekhnol.Vody 37 (2015) 197-206. [Back]
  29. L. Biedermannová and B. Schneider, Hydration of proteins and nucleic acids: Advances in experiment and theory. A review, BBA - General Subjects (2016) Article in press, doi: 10.1016/j.bbagen.2016.05.036. [Back]
  30. M. D. Shoulders and R. T. Raines, Collagen structure and stability, Annu. Rev. Biochem. 78 (2009) 929-958;
    C. Domene, C. Jorgensen and S. W. Abbasi, A perspective on structural and computational work on collagen, Phys. Chem. Chem. Phys. 18 (2016) 24802. [Back]
  31. Z. Wu, G. Hua, K. Wang, B. Yu. Zaslavsky, L. Kurgan and V. N. Uversky, What are the structural features that drive partitioning of proteins in aqueous two-phase systems? Biochim. Biophys. Acta (2016) Article in press, http://dx.doi.org/10.1016/j.bbapap.2016.09.010. [Back]
  32. O. Miyawaki, M. Dozen and K. Hirota, Cooperative hydration effect causes thermal unfolding of proteins and water activity plays a key role in protein stability in solutions, J. Biosci. Bioeng.122 ( 2016) 203-207. [Back]
  33. D. T. Limmer, A. P. Willard,1, P. Madden and D. Chandler, Hydration of metal surfaces can be dynamically heterogeneous and hydrophobic, PNAS 110 (2013) 4200-4205. [Back]
  34. A. Hodgson and S. Haq, Water adsorption and the wetting of metal surfaces, Surface Sci. Rep. 64 (2009) 381-451. [Back]
  35. A. Michaelides, Density functional theory simulations of water–metal interfaces: waltzing waters, a novel 2D ice phase, and more, Appl. Phys. A 85 (2006) 415-425. [Back]
  36. D. T. Limmer, A. P. Willard, P. A. Madden and D. Chandler, Water exchange at a hydrated platinum electrode is rare and collective, J. Phys. Chem. C, 119 (2015) 24016-24024. [Back]
  37. T. R. Rogers, K.-Y. Leong and F. Wang, Possible evidence for a new form of liquid buried in the surface tension of supercooled water, Scientific Reports 6 (2016) 33284. [Back, 2]
  38. M. Matsumoto, T. Yagasaki and H. Tanaka, Chiral ordering in supercooled liquid water and amorphous ice
    Phys. Rev. Lett. 115 (2015) 197801. [Back]
  39. J. Guo, X. Meng, J. Chen, J. Peng, J. Sheng, X.-Z. Li, L. Xu, J.-R. Shi, E. Wang and Y. Jiang, Real-space imaging of interfacial water with submolecular resolution, Nature Mater. 13 (2014) 184-189. [Back]
  40. J. Carrasco, A. Michaelides and M. Scheffler, Insight from first principles into the nature of the bonding between water molecules and 4d metal surfaces, J. Chem. Phys. 130 (2009) 184707; L. G. M. Pettersson and A. Nilsson, A molecular perspective on the d-band model: synergy between experiment and theory Topics Catalysis 57 (2014) 2-13. [Back]
  41. J. C. del Valle, E. Camarillo, L. M. Maestro, J. A. Gonzalo, C. Aragó, M. Marqués, D. Jaque, G. Lifante, J. G. Solé, K. Santacruz-Gómez, R. C. Carrillo-Torres and F. Jaque, Dielectric anomalous response of water at 60 °C, Philosophical Mag. 95 (2015) 683-690. [Back]
  42. S. Maeda, H. Kobayashi, K. Ida, M. Kashiwa, I. Nishihara and T. Fujita, The effect of dilution on the quantitative measurement of bubbles in high-density ultrafine bubble-filled water using the light scattering method, Int. Conf. Optical Particle Characterization (OPC 2014), ed. N. Aya, N. Iki, T. Shimura and T. Shirai, Proc. of SPIE 9232 (2014) 92320V, doi:.10.1117/12.2064810. [Back]
  43. H. Kobayashi, S. Maeda, M. Kashiwa and T. Fujita, Measurements of ultrafine bubbles using different types of
    particle size measuring instruments, Int. Conf. Optical Particle Characterization (OPC 2014), ed. N. Aya, N. Iki, T. Shimura and T. Shirai, Proc. of SPIE 9232 (2014) 92320U, doi:.10.1117/12.2064638. [Back]
  44. S. O. Yurchenko, A. V. Shkirin, B. W. Ninham, A. A. Sychev, V. A. Babenko, N. V. Penkov, N. P. Kryuchkov and N. F. Bunkin, Ion-specific and thermal effects in the stabilization of the gas nanobubble phase in bulk aqueous electrolyte solutions, Langmuir 32 (2016) 11245-11255. [Back]
  45. M. Alheshibri, J. Qian, M. Jéhannin,and V. S. J. Craig, A history of nanobubbles, Langmuir (2016) Article in press, doi: 10.1021/acs.langmuir.6b02489. [Back]
  46. M. Zhang and J. R. T. Seddon, Nanobubble−nanoparticle interactions in bulk solutions, Langmuir (2016) Article in press, doi: 10.1021/acs.langmuir.6b02419. [Back]
  47. P. Attard, Pinning down the reasons for the size, shape, and stability of nanobubbles, Langmuir (2016) Article in press, doi: 10.1021/acs.langmuir.6b01563. [Back]
  48. D. Jing, D. Li, Y. Pan and B. Bhushan, Surface charge-induced EDL interaction on the contact angle of surface nanobubbles, Langmuir (2016) Article in press, doi: 10.1021/acs.langmuir.6b00976. [Back]
  49. H. N. Morse and J. C. W. Frazer, The osmotic pressure and freezing-points of soiutions of cane-sugar, Am. Chemical J. (Baltimore) 34 (1905) 1-99. [Back]
  50. W. R. Bousfield, Osmotic pressure in relation to the constitution of water and the hydration of the solute, Trans. Faraday Soc.13 (1917) 141-155. [Back, 2, 3] [Back to Top to top of page]
  51. J. C. Henniker, The depth of the surface zone of a liquid, Rev. Modern Phys. 21 (1949) 322-341. [Back]
  52. J. I. Vílchez, C. García-Fontana, D.Román-Naranjo, J. González-López and M. Manzanera, Plant drought tolerance enhancement by trehalose production of desiccation-tolerant microorganisms. Front. Microbiol. 7 (2016) 1577.
    doi: 10.3389/fmicb.2016.01577. [Back]
  53. L. A. Bagatolli and R. P. Stock, The cell as a gel: materials for a conceptual discussion, Physiol. Mini Rev. 9 (2016) 38-49. [Back]
  54. S. Pöyry and I. Vattulainen, Role of charged lipids in membrane structures - Insight given by simulations, Biochim. Biophys. Acta 1858 (2016) 2322-2333. [Back]
  55. L. M. Maestro, M. I. Marqués, E. Camarillo, D. Jaque, J. G. Solé, J. A. Gonzalo, F. Jaque, J. C. del Valle, F. Mallamace and H. E. Stanley, On the existence of two states in liquid water: impact on biological and nanoscopic systems, Int. J. Nanotechnol. 13 (2016) 667-677. [Back, 2, 3, 4, 5]
  56. M. L. V. Ramires, C. A. Nieto de Castro, Y. Nagasaka, A. Nagashima, M. J. Assael and W. A. Wakeham, Standard reference data for the thermal conductivity of water, J. Phys. Chem. Ref. Data 24 (1995) 1377-1381. [Back]
  57. L. S. Shraiber, Experimental investigation ofthe thermal dependence of the piezo-optical coefficient of water between 5 and 90°C, Israel J. Chem. 13 (1975) 181-184. [Back]
  58. U. Ranieri, P. Giura, F. A. Gorelli, M. Santoro, S. Klotz, P. Gillet, L. Paolasini, M. M. Koza and L. E.Bove, Dynamical crossover in hot dense water: The hydrogen bond role, J. Phys. Chem. B, (2016) Article in press, doi: 10.1021/acs.jpcb.6b04142. [Back]
  59. A. H. Persad and C. A. Ward, Expressions for the evaporation and condensation coefficients in the Hertz-Knudsen relation, Chem. Rev. 116 (2016) 7727-7767. [Back]
  60. R. Marek and J. Straub, Analysis of the evaporation coefficient and the condensation coefficient of water, Int. J. Heat Mass Transfer, 44 (2001) 39-53. [Back]
  61. Y. Chong, A. Kleinhammes and Y. Wu, Protein dynamics and thermodynamics crossover at 10°C: different roles of hydration at hydrophilic and hydrophobic groups, Chem. Phys. Lett. (2016) Article in press, doi:
    10.1016/j.cplett.2016.10.024. [Back]
  62. Y. Liu and J. Wu, Communication: Long-range angular correlations in liquid water, J. Chem. Phys. 139 (2013) 041103. [Back]
  63. A. Henao, S. Busch, E. Guardia, J. L. Tamarita and L. C. Pardo, The structure of liquid water beyond the first
    hydration shell, Phys. Chem. Chem. Phys. 18 (2016) 19420-19425. [Back]
  64. C. C. M. Groot, K. P. Velikov and H. J. Huib, Structure and dynamics of water molecules confined in triglyceride oils, Phys. Chem. Chem. Phys. (2016) Article in press, doi: 10.1039/c6cp05883c. [Back]
  65. K. Simons, Cell membranes: A subjective perspective, Biochim. Biophys.Acta 1858 (2016) 2569-2572. [Back]
  66. M. Pasenkiewicz-Gierula, K. Baczynski, M. Markiewicz and K. Murzyn, Computer modelling studies of the bilayer/water interface, Biochim. Biophys.Acta 1858 (2016) 2305-2321. [Back]
  67. E. A. Disalvo, Ed. Membrane hydration The role of water in the structure and function of biological membranes, (Springer, 2015) ISSN 0306-0225. [Back]
  68. C. Andreani, G. Romanelli and R. Senesi, Direct measurements of quantum kinetic energy tensor in stable and metastable water near the triple point: An experimental benchmark, J. Phys. Chem. Lett. 7 (2016) 2216-2220. [Back]
  69. L. Dougan, R.Hargreaves,S. P. Bates, J. L. Finney, V.Reat, A. K. Soper and J. Crain, Segregation in aqueous methanol enhanced by cooling and compression. J. Chem. Phys. 122 (2005) 174514-174517. [Back]
  70. J. J. Towey, A. K. Soper and L. Dougan, Low density water structure observed in a nano-segregated cryoprotectant solution at low temperatures from 285 K to 238 K, J. Phys. Chem. B, (2016) Article in press, doi: 10.1021/acs.jpcb.6b01185. [Back]
  71. S. Wciślik, Thermal infrared mapping of the Leidenfrost drop evaporation, J. Phys. Conf. Series 745 (2016) 032064. [Back]
  72. E. Buxbaum, Transport of solutes across membranes, In: Fundamentals of protein structure and function, (Springer, Switzerland, 2015) doi 10.1007/978-3-319-19920-7_18, pp 421-468. [Back]
  73. T. A. Strobel, M. S Somayazulu, S. V. Sinogeikin, P. Dera and R. J. Hemley, Hydrogen-stuffed, quartz-like water ice, J. Am. Chem. Soc. 138 (2016) 13786-13789. [Back].
  74. A. V. Khakhalin and O. N. Gradoboeva, Investigation of the chiral properties of configurations of (H2O)n, K+(H2O)m, and Na)m(H2O)m (n = 4–8, m = 5–10) small water clusters at 1 K, Moscow Uni. Phys. Bull. (Allerton Press) 71 (2016) 413-419. Original Russian text A. V. Khakhalin and O. N. Gradoboeva, Vestnik Moskovskogo Universiteta, Seriya 3: Fizika, Astronomiya, (2016) 4, 76-82. [Back]
  75. J. M. Rodgers and T. Ichiye, Multipole moments of water molecules and the aqueous solvation of monovalent ions, J. Mol. Liquids (2016) Article in press, doi: 10.1016/j.molliq .2016.10.007. [Back] [Back to Top to top of page]
  76. E. Duboué-Dijon, A. C. Fogarty, J. T. Hynes and D. Laage, Dynamical disorder in the DNA hydration shell, J. Am. Chem. Soc. (2016) Article in press, doi: 10.1021/jacs.6b02715. [Back]
  77. S. D. Bernardina, E. Paineau, J.-B. Brubach, P. Judeinstein, S. Rouzière, P. Launois and P. Roy, Water in carbon nanotubes: the peculiar hydrogen bond network revealed by infrared spectroscopy, J. Am. Chem. Soc. (2016) Article in press, doi: 10.1021/jacs.6b02635. [Back]
  78. A. M. Rizzuto, S. Irgen-Gioro, A. Eftekhari-Bafrooei and R.J. Saykally, Broadband deep UV spectra of interfacial aqueous iodide, J. Phys. Chem. Lett. (2016) Article in press, doi: 10.1021/acs.jpclett.6b01931. [Back]
  79. N. Shukla, E. Pomarico, L. Chen, M. Chergui and C. M. Othon, Retardation of bulk water dynamics by disaccharide osmolytes, J. Phys. Chem. B (2016) Article in press, doi: 10.1021/acs.jpcb.6b07751. [Back]
  80. C. Olsson, H. Jansson and J. Swenson, The role of trehalose for the stabilization of proteins, J. Phys. Chem. B (2016) Article in press, doi: 10.1021/acs.jpcb.6b02517. [Back]
  81. K. Haider, L. Wickstrom, S. Ramsey, M.K. Gilson and K. Thomas, Enthalpic breakdown of water structure on protein active-site surfaces, J. Phys. Chem. B (2016) Article in press, doi: 10.1021/acs.jpcb.6b01094. [Back]
  82. M. Chen, X. Lin, W. Zheng, J. N. Onuchic and P. G. Wolynes, Protein folding and structure prediction from the ground up: The atomistic associative memory, water mediated, structure and energy model (AAWSEM), J. Phys. Chem. B (2016) Article in press, doi: 10.1021/acs.jpcb.6b02451. [Back]
  83. V. R. Hande and S. Chakrabarty, Exploration of the presence of bulk-like water in AOT reverse micelles and water-in-oil nanodroplets: the role of charged interfaces, confinement size and properties of water, Phys. Chem. Chem. Phys. 18 (2016) 21767. [Back]
  84. D. Porschke, Boundary conditions for free A‑DNA in solution and the relation of local to global DNA structures at reduced water activity, Eur. Biophys. J. 45 (2016) 413-421. [Back]
  85. Y. Tong, T. Kampfrath and R. K. Campen, Experimentally probing the libration of interfacial water: the rotational potential of water is stiffer at the air/water interface than in bulk liquid, Phys. Chem. Chem. Phys. 18 (2016) 18424-18430. [Back]
  86. V. I. Roldughin and T. V. Kharitonova, Osmotic pressure or decompression? Colloid J.77 2015) 787-794; Original Russian text Kolloidnyi Zh.77 (2015) 783–791. [Back]
  87. G. Murdachaew, G. M. Nathanson, R. B. Gerber and L. Halonen, Deprotonation of formic acid in collisions with a liquid water surface studied by molecular dynamics and metadynamics simulations, Phys. Chem. Chem. Phys. (2016) Article in press, doi: 10.1039/c6cp06071d. [Back]
  88. R. H. Tromp, R. Tuinier and M. Vis, Polyelectrolytes adsorbed at water-water interfaces, Phys. Chem. Chem. Phys. (2016) Article in press, doi: 10.1039/C6CP06789A. [Back]
  89. O. Fisette, C. Päslack, R. Barnes, J. M. Isas, R. Langen, M. Heyden, S. Han and L. V. Schäfer, Hydration dynamics of a peripheral membrane protein, J. Am. Chem. Soc. 138 (2016) 11526-11535. [Back]
  90. K. Green and T. Otori, Direct measurements of membrane unstirred layer, J. Physiol. 207 (1970) 93-102. [Back]
  91. M. Michelin-Jamois, C. Picard, G. Vigier and E. Charlaix, Giant osmotic pressure in the forced wetting of hydrophobic nanopores, Phys. Rev. Lett. 115 (2015) 036101. [Back]
  92. (a) B. Chai, A. G. Mahtani and G. H. Pollack, Unexpected presence of solute-free zones at metal-water interfaces. Contemp Mater. 3 (2012) 1-12; (b) F. Musumecia and G. H. Pollack, High electrical permittivity of ultrapure water at the water–platinum interface, Chem. Phys. Lett. 613 (2014) 19-23; (c) H. Yoo, R. Paranji and G. H. Pollack, Impact of hydrophilic surfaces on interfacial water dynamics probed with NMR spectroscopy, J. Phys. Chem. Lett. 2 (2011) 532-536. [Back]
  93. V. Tychinsky, High electric susceptibility is the signature of structured water in water-containing objects, WATER 3 (2011) 95-99, doi: 10.14294/WATER.2011.8. [Back]
  94. J. W. Biddle, V. Holten and M. A. Anisimov, Behavior of supercooled aqueous solutions stemming from hidden liquid–liquid transition in water, J. Chem. Phys. 141 (2014) 074504. [Back]
  95. C. E. Neuzil and A. M. Provost, Recent experimental data may point to a greater role for osmotic pressures in the subsurface, Water Resources Res. 45 (2009) W03410, doi:10.1029/2007WR006450. [Back]
  96. L. del Rosso, M. Celli and L. Ulivi, New porous water ice metastable at atmospheric pressure obtained by emptying a hydrogen-filled ice, Nature Comm. 7 (2016) 13394; L. del Rosso, F. Grazzi, M. Celli, D. Colognesi, V. Garcia-Sakai, and L. Ulivi, Refined structure of metastable ice XVII from neutron diffraction measurements, J. Phys. Chem. C, (2016) Article in press doi: 10.1021/acs.jpcc.6b10569. [Back, 2, 3, 4]
  97. S.-H. Chong and S. Ham, Anomalous dynamics of water confined in protein−protein and protein−DNA interfaces, J. Phys. Chem. Lett. 7 (2016) 3967-3972. [Back]
  98. J. M. Guevara-Vela, E. Romero-Montalvo, V. A. M. Gómez, R. Chávez-Calvillo, M. García-Revilla, E. Francisco, A. M. Pendás and T. Rocha-Rinza, Hydrogen bond cooperativity and anticooperativity within the water hexamer, Phys. Chem. Chem. Phys. 18 (2016 ) 19557-19566. [Back]
  99. I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov and G. Yushin, A major constituent of brown agae for use in high-capacity Li-ion batteries, Science 334 (2011) 75-79. [Back]
  100. S. Iwata, D. Akase, M. Aida and S. S. Xantheas, Electronic origin of the dependence of hydrogen bond strengths on nearest-neighbor and next-nearest-neighbor hydrogen bonds in polyhedral water clusters (H2O)n, n = 8, 20 and 24, Phys. Chem. Chem. Phys. 18 (2016) 19746-19756. [Back]


Home | Site Index | Site Map | Search | LSBU | Top


This page was established in 2016 and last updated by Martin Chaplin on 15 August, 2017

Creative Commons License
This work is licensed under a Creative Commons Attribution
-Noncommercial-No Derivative Works 2.0 UK: England & Wales License