Water site headerMasthead Island, Great Barrier Reef Print-me keygo to Water Visitor Book contributions
 Go to my page Water Structure and Science

Water Structure and Science, References 2801 - 2900

 

  1. K. Meister, S. Strazdaite, A. L. DeVries, S. Lotze, L. L. C. Olijve, I. K. Voets, and H. J. Bakker, Observation of ice-like water layers at an aqueous protein surface, Proceedings of the National Academy of Sciences, 111 (2014 ) 17732–17736. [Back]
  2. Y-C. Liou, A. Tocilj, P. L. Davies and Z. Jia, Mimicry of ice structure by surface hydroxyls and water of a β-helix antifreeze protein, Nature, 406 (2000) 322‑328. [Back]
  3. C. C. M. Groot and H. J. Bakker, Proteins take up water before unfolding, Journal of Physical Chemistry Letters, 7 (2016) 1800-1804. [Back]
  4. Z. Zhang , W. Jiang , B. Wang and Z. Wang, Quantitative contribution of molecular orbitals to hydrogen bonding in a water dimer: Electron density projected integral (EDPI) analysis, Chemical Physics Letters, 678 (2017) 98-101; Z. Zhang , W. Jiang , B. Wang and Z. Wang, Electronic structure contribution to hydrogen bonding interaction of a water dimer, arXiv:1611.02171 (2016) (physics.chem-ph). [Back]
  5. M. Bar Dolev, R. Bernheim, S. Guo, P. L. Davies and I. Braslavsky, Putting life on ice: bacteria that bind to frozen water. Journal of R. Soc. Interface, 13 (2016) 20160210. http://dx.doi.org/10.1098/rsif.2016.0210; C. P. Garnham, R. L. Campbell and P. L. Davies, Anchored clathrate waters bind antifreeze proteins to ice, Proceedings of the National Academy of Sciences, 108 (2011) 7363-7367. [Back]
  6. D. Zong, H. Hu, Y. Duan and Y. Sun, Viscosity of water under electric field: anisotropy induced by redistribution of hydrogen bonds, Journal of Physical Chemistry B, 120 (2016) 4818-4827. [Back]
  7. L. A. Bagatolli and R. P. Stock, The cell as a gel: materials for a conceptual discussion, Physiological Mini-Reviews, 9,5 (2016) 38-49. [Back]
  8. D. Florea, S. Musa, J. M. R. Huyghe and H. M. Wyss, Long-range repulsion of colloids driven by ion exchange and diffusiophoresis, Proceedings of the National Academy of Sciences, 111 (2014) 6554-6559; S. Musa, D. Florea, H. M. Wyss and J. M. Huyghe, Convection associated with exclusion zone formation in colloidal suspensions, Soft Matter, 12 (2016) 1127-1132. [Back]
  9. H. C. Burridge and P. F. Linden, Questioning the Mpemba effect: hot water does not cool more quickly than cold
    Science Reports, 6 (2016) 37665; subject to criticism in E. Stoye, Mpemba effect in hot water, Chemistry World, 14 (2017) 49. [Back]
  10. B. Wojciechowski, I. Owczarek and G. Bednarz, Freezing of aqueous solutions containing gases, Crystal Research and Technology, 23 (1988) 843-848. [Back]
  11. J.-S. Samson, R. Scheu, N. Smolentsev, S. W. Rick and S. Roke, Sum frequency spectroscopy of the hydrophobic nanodroplet/water interface: Absence of hydroxyl ion and dangling OH bond signatures, Chemical Physics Letters, 615 (2014) 124-131. [Back]
  12. S. Chakrabarty and E. R. Williams, The effect of halide and iodate anions on the hydrogen-bonding network of water in aqueous nanodrops, Physical Chemistry Chemical Physics, 18 (2016) 25483. [Back]
  13. J. Liu J. Hou, Ji. Xu, H. Liu, G. Chen and J. Zhang, Formation of clathrate cages of sI methane hydrate revealed by ab initio study, Energy, 120 (2017) 698-704. [Back]
  14. M.. Madygulov, A. N. Nesterov, A. M. Reshetnikov, V. A. Vlasov and A.G. Zavodovsky, Study of gas hydrate metastability andi ts decay for hydrates amples containing unreacted supercooled liquid water below the ice melting point using pulse NMR, Chemical Engineering Science, 137 (2015) 287-292. [Back]
  15. J. Moffat, V. J. Morris, S. Al-Assaf and A. P. Gunning, Visualisation of xanthan conformation by atomic force microscopy, Carbohydrate Polymers, 148 (2016) 380-389. [Back]
  16. S. Shimizu and N. Matubayasi, The origin of cooperative solubilisation by hydrotropes, Physical Chemistry Chemical Physics, 18 (2016) 25621. [Back]
  17. Y.-H. Ahn, H. K. D.-Y. Koh and H. Lee, Experimental verifications of Mpemba-like behaviors of clathrate hydrates, Korean Journal of Chem. Eng. 32 (2015) 1-5. [Back]
  18. C. T. Wolke, J. A. Fournier, L. C. Dzugan, M. R. Fagiani, T. T. Odbadrakh, H. Knorke, K. D. Jordan, A. B. McCoy, K. R. Asmis and M. A. Johnson, Spectroscopic snapshots of the proton-transfer mechanism in water, Science, 354 (2016) 1131-1135; S. S. Xantheas, Spying on the neighbors poolr, Science, 354 (2016) 1101. [Back]
  19. P. L. Davies, Ice-binding proteins: a remarkable diversity of structures for stopping and starting ice growth, Trends Biochem. Science 39 (2014) 548-556. [Back]
  20. M. Schauperl, M. Podewitz, B. J. Waldner and K. R. Liedl, Enthalpic and entropic contributions to hydrophobicity, Journal of Chem.Theory Comput.12 (2016) 4600-4610. [Back]
  21. J. R. Espinosa, A. Zaragoza, P. Rosales-Pelaez, C. Navarro, C.Valeriani, C. Vega and E. Sanz, Interfacial free energy as the key to the pressure-induced deceleration of ice nucleation, Physical Review Letters 117 (2016) 135702. [Back]
  22. N. F. Bunkin and F. V. Bunkin, Bubston structure of water and electrolyte aqueous solutions, Physics - Uspekhi 59 (2016) 846- 865; first published in Uspekhi Fizicheskikh Nauk 186 2016) 933-952. [Back]
  23. M. Lasich, A. H. Mohammadi and D. Ramjugernath, Factors influencing clathrate hydrate stability in equilibrium with liquid water: Insights from information-based statistical analysis, Journal of Molecular Liquids, 222 (2016) 8-13. [Back]
  24. F. Mallamace, C. Corsaro, D. Mallamace, S. Vasi and H. E. Stanley, NMR spectroscopy study of local correlations in water. Journal of Chemical Physics,145 (2016) 214503. [Back]
  25. Y. T. Yao, K. L. Alderson and A. Alderson, Modeling of negative Poisson’s ratio (auxetic) crystalline cellulose Ib, Cellulose 23 (2016) 3429-3448. [Back]  [Back to Top to top of page]
  26. C. Doehring and A. Sundrum, Efficacy of homeopathy in livestock according to peer-reviewed publications from 1981 to 2014, Veterinary Record, (2016) doi:10.1136/vr.10377. [Back]
  27. T. Buchecker, S. Krickl, R. Winkler, I. Grillo, P. Bauduin, D. Touraud, A. Pfitzner and W. Kunz, The impact of the structuring of hydrotropes in water on the mesoscale solubilisation of a third hydrophobic component, Physical Chemistry Chemical Physics, 19 (2017) 1806-1816. [Back]
  28. T. Hutter, C. Gimbert, F. Bouchard and F.-J. Lapointe, Being human is a gut feeling, Microbiome, 3:9 (2015) doi: 10.1186/s40168-015-0076-7. [Back]
  29. J. W. McRorie, Understanding the physics of functional fibers in the gastrointestinal tract: an evidence-based approach to resolving enduring misconceptions about insoluble and soluble fiber, Journal of the Academy of Nutrition and Dietetics, 117 (2017) 251-264. [Back]
  30. C. S. Choe, J. Lademann and M. E. Darvin, Depth profiles of hydrogen bound water molecule types and their relation to lipid and protein interaction in the human stratum corneum in vivo, Analyst ,141 (2016) 6329-6337. [Back]
  31. H.-C. Chen, F.-D. Mai, B.-J. Hwang, M.-J. Lee, C.-H. Chen, S.-H. Wang, H.-Y. Tsai, C.-P. Yang and Y.-C. Liu, Creation of electron-doping liquid water with reduced hydrogen bonds, Science Reports, 6 (2016) 22166. [Back]
  32. S. Cancelos, G. Villamizar, A. Saavedra-Ruiz, W. Garcia-Rodriguez, P. T. Filoni and C. Marin, Experiments with nano-scaled helium bubbles in water subjected to standing acoustic fields. Nuclear Engineering and Design, 310 (2016) 587-591. [Back]
  33. C. Marcolli, B. Nagare, A. Welti and U. Lohmann, Ice nucleation efficiency of AgI: review and new insights, Atmos.pheric Chemical Physics, 16 (2016) 8915-8937. [Back]
  34. M. Hellström and J. Behler, Structure of aqueous NaOH solutions: insights from neural-network-based molecular dynamics simulations. Physical Chemistry Chemical Physics, 19 (2017) 82-96. [Back]
  35. J.-Y. Li, Z.-Q. Wu, J.-J. Xu, H.-Y. Chen and X.-H. Xia, Water transport within carbon nanotubes on a wave, Physical Chemistry Chemical Physics, 18 (2016) 33204-33210. [Back]
  36. C. Drechsel-Grau and D. Marx, Collective proton transfer in ordinary ice: local environments, temperature dependence and deuteration effects, (2016) Article in press, doi: 10.1039/c6cp05679b. [Back]
  37. L. De Marco, J. A. Fournier, M. Thämer, W. Carpenter and A Tokmakoff, Anharmonic exciton dynamics and energy dissipation in liquid water from two dimensional infrared spectroscopy, Journal of Chemical Physics,145 (2016) 094501. [Back]
  38. G. Némethy and H. A. Scheraga, Structure of water and hydrophobic bonding in proteins. IV. The thermodynamic properties of liquid deuterium oxide, Journal of Chemical Physics,41 (1964) 680-689. [Back]
  39. W. Zheng, A. Borgia, K. Buholzer, A. Grishaev, B. Schulerand R. B. Best, Probing the action of chemical denaturant on an intrinsically disordered protein by simulation and experiment, Journal of the American Chemical Society, 138 (2016) 11702-11713. [Back]
  40. M. C. Tourell and K. I. Momot, Molecular dynamics of a hydrated collagenpeptide: insights into rotational motion and residence times of single-water bridges in collagen, Journal of Physical Chemistry B,120 (2016) 12432-12443. [Back]
  41. I. Tah and J. Mondal, How does a hydrophobic macromolecule respond to mixed osmolyte environment? Journal of Physical Chemistry B, 120 (2016) 10969-10978. [Back]
  42. M. A. Sánchez, T. Kling, T. Ishiyam, M.-J. van Zadel, P. J. Bisson, M. Mezger, M. N. Jochum, J. D. Cyrana W. J. Smit, H. J. Bakker, M. J. Shultz, A. Morita, D. Donadio, Y. Nagata, M. Bonn and E. H. G. Backus,, Experimental and theoretical evidence for bilayer-by bilayer surface melting of crystalline ice, Proceedings of the National Academy of Sciences, 114 (2017) 227–232; A. Michaelides and B. Slater, Melting the ice one layer at a time, Proceedings of the National Academy of Sciences, 114 (2017) 195-197. [Back]
  43. A. Fernández, Non-Debye frustrated hydration steers biomolecular association: Interfacial tension for the drug designer, FEBS Letters, 590 (2016) 3481-3491. [Back]
  44. T. Ohto, J. Hunger, E. Backus, W. Mizukami, M. Bonn and Y. Nagata, Trimethylamin-N-oxide: Hydration structure, surface activity, and biological function viewed by vibrational spectroscopies and molecular dynamics simulations, Physical Chemistry Chemical Physics, (2017) Article in press, doi: 10.1039/C6CP07284D. [Back]
  45. M. P. M. Marques, A. L. M. B. de Carvalho, V. G. Sakai, L. Hatterd and L. A. E. B. de Carvalhoa, Intracellular water – an overlooked drug target?nCisplatin impact in cancer cells probed by neutrons, Physical Chemistry Chemical Physics, (2017) Article in press, doi: 10.1039/c6cp05198g. [Back]
  46. M. R. Hilaire, R. M. Abaskharon and F. Gai, Biomolecular crowding arising from small molecules, molecular constraints, surface packing, and nano-confinement, Journal of Physical Chemistry Letters, 6 (2015) 2546-2553. [Back]
  47. J. Chen, X. Gong, C. Zeng, Y. Wang and G. Zhang, Mechanical insight into resistance of betaine to urea-induced protein denaturation, Journal of Physical Chemistry B 120 (2016) 12327-12333. [Back]
  48. K. Shiraga, Y. Ogawa and N. Kondo, Hydrogen bond network of water around protein investigated with terahertz and infrared spectroscopy, Biophysical Journal, 111 ( 2016) 2629-2641; D. Laage, T. Elsaesser and J. T. Hynes, Perspective: Structure and ultrafast dynamics of biomolecular hydration shells, Structural Dynamics 4 (2017) 044018; D. Laage, T. Elsaesserand J. T. Hynes, Water dynamics in the hydration shells of biomolecules,
    Chemical Reviews, 117 (2017) 10694-10725; O. Carugo, Protein hydration: Investigation of globular protein crystal structures, International Journal of Biological Macromolecules, 99 (2017) 160-165. [Back]
  49. E. Gianti, L. Delemotte, M. L. Klein and V. Carnevale, On the role of water density fluctuations in the inhibition of a proton channel, Proceedings of the National Academy of Sciences, 113 (2016) E8359-E8368. [Back]
  50. J. Grdadolnik, F. Merzel,and F. Avbelj,, in of hydrophobicity and enhanced water hydrogen bond strength near purely hydrophobic solutes, Proceedings of the National Academy of Sciences, 114 (2017) 322-327. [Back, 2]  [Back to Top to top of page]
  51. L. Erlbeck, M. Rädle, R. Nessel, F. Illner, W.Müller, K. Rudolph, T. Kunz and F.-J. Methner, Investigation of the depletion of ions through freeze desalination, Desalination, 407 (2017) 93-102. [Back]
  52. R. Naohara, K. Narita and T. Ikeda-Fukazawa, Change in hydrogen bonding structures of a hydrogel with dehydration, Chemical Physics Letters, 670 (2017) 84-88. [Back]
  53. T. H. Jang, S. C. Park, J. H. Yang, J. Y. Kim, J. H. Seok, U. S. Park, C. W. Choi, S. R. Lee, J. Han, Cryopreservation and its clinical applications, Integrative Medicine Research, (2017), Article in press, doi: 10.1016/j.imr.2016.12.001. [Back]
  54. S. Ishikawa and N. Tsuchiya, Structure of interfacial water on quartz and its self-diffusion coefficient revealed by molecular dynamics simulations, Procedia Earth Planetary Science, 17 (2017) 853-856. [Back]
  55. T. H. Kim,, P. Mehrabi, Z. Ren, A. Sljoka, C. Ing, A. Bezginov, L. Ye, R. Pomès, R. S. Prosser and E. F. Pai, The role of dimer asymmetry and protomer dynamics in enzyme catalysis, Science, 355 (2017) 262; T. Saleh and C. G. Kalodimos, Enzymes at work are enzymes in motion, Science, 355 (2017) 247-248. [Back]
  56. J. Heyda, H. I. Okur, J. Hladílková, K. B. Rembert, W. Hunn, T. Yang, J. Dzubiella, P. Jungwirth and P. S. Cremer, Guanidinium can both cause and prevent the hydrophobic collapse of biomacromolecules, Journal of the American Chemical Society, 139 (2017) 863-870. [Back]
  57. P. Sripa, A. Tongraar and T. Kerdcharoen, Characteristics of K+ and Rb+ as ‘‘structure-breaking” ions in dilute aqueous solution: Insights from ONIOM-XS MD simulations, Chemical Physics, 479 (2016) 72–80. [Back]
  58. J. D. Miller, X. Wang, J. Jin and K. Shrimali, Interfacial water structure and the wetting of mineral surfaces, International Journal of Mineral Process. 156 (2016) 62-68. [Back]
  59. T. G. Leighton, The acoustic bubble: Ocean, cetacean and extraterrestrial acoustics, and cold water cleaning, Journal of Physics: Conference Series, 797 (2017) 012001. [Back]
  60. A. D. Fortes, I. G. Wood, D. Grigoriev, M. Alfredsson, S. Kipfstuhl, K. S. Knight and R. I. Smith, No evidence for large-scale proton ordering in Antarctic ice from powder neutron diffraction, Journal of Chemical Physics, 120 (2004) 11376-11379. [Back]
  61. J. J. Shephard, S. Ling, G. C. Sosso, A. Michaelides, B. Slater and C. G. Salzmann, Is high-density amorphous ice simply a ‘Derailed’ state along the ice I to ice IV pathway? arXiv:1701.05398 [cond-mat.mtrl-sci]. [Back, 2]
  62. Y. Huang, C. Zhu, L. Wang, J. Zhao and X. C. Zeng, Prediction of a new ice clathrate with record low density: A potential candidate as ice XIX in guest-free form, Chemical Physics Letters, 671 (2017) 186-191. [Back]
  63. A.Kiselev, F. Bachmann, P. Pedevilla, S. J. Cox, A. Michaelides, D. Gerthsen and T. Leisner, Active sites in heterogeneous ice nucleation—the example of K-rich feldspars, Science, 355 (2017) 367-371; J. Murray, Cracking the problem of ice nucleation, Science, 355 (2017) 346-347. [Back]
  64. A. A. Zavitsas, The nature of aqueous solutions: Insights into multiple facets of chemistry and biochemistry from freezing-point depressions, Chem. Eur. Journal , 16 (2010) 5942-5960; A. A. Zavitsas, Comment on “The size and structure of selected hydrated ions and implications for ion channel selectivity” by Z.-H. Yang, RSC. Advances, 2015, 5, 1213, RSC Advances, 6 (2016) 92771-92777. [Back, 2]
  65. M. Tyagi and S. S. N. Murthy, Dielectric relaxation in ice and ice clathrates and its connection to the low temperature phase vtransition induced by alkali hydroxides as dopants, Journal of Physical Chemistry A, 106 (2002) 5072. [Back]
  66. T. Sugimoto, N. Aiga, Y. Otsuki, K. Watanabe and Y. Matsumoto, Emergent high-Tc ferroelectric ordering of strongly correlated and frustrated protons in a heteroepitaxial ice film, Nature Physics, (2016) Article published on line, doi: 10.1038/nphys3820; I. A. Ryzhkin, Not obeying the rules, Nature Physics, (2016) Article published on line, doi: 10.1038/nphys3853. [Back]
  67. J. A. Ripmeester and S. Alavi, Some current challenges in clathrate hydrate science: Nucleation, decomposition and the memory effect, Curr. Opin. Solid State Mater. Science 20 (2016) 344-351, [Back]
  68. J. Bella, B. Brodsky and H. M Bermanl, Hydration structure of a collagen peptide, Structure 3 (1995) 893-906, [Back]
  69. C. D. Syme, J. Mosses, M. González-Jiménez, O. Shebanova, F. Walton and K. Wynne, Frustration of crystallisation by a liquid–crystal phase, Science Reports, 7 (2017) 42439; doi: 10.1038/srep42439. [Back]
  70. F. Mallamace, C, Corsaro, D, Mallamace, S. Vasi and H. E. Stanley, NMR spectroscopy study of local correlations in water, Journal of Chemical Physics,145 (2016) 214503. [Back]
  71. S. Giuffrida, G. Cottone and L. Cordone, The water association band as a marker of hydrogen bonds in trehalose amorphous matrices, Physical Chemistry Chemical Physics, 19 (2017) 4251-4265. [Back]
  72. P. R. Smirnov and O. V. Grechin, Structure of concentrated aqueous solutions of scandium chloride, Journal of Physical Chemistry A, 91 (2017) 517-520, originally published in Zh. Fiz. Khim. 91 (2017) 474-478. [Back]
  73. P. Muthukumar and D. V. N. Lakshmi, Nucleation enhancement studies on aqueous salt solutions, Energy Procedia, 109 (2017) 174-180. [Back]
  74. Y. Nosaka, M. Hirabayashi, T. Kobayashi and E.Tokunaga, Gigantic optical Pockels effect in water within the electric double layer at the electrode-solution interface, Physical Review, B 77 (2008) 241401. [Back]
  75. K. V. Agrawal, S. Shimizu, L. W. Drahushuk, D. Kilcoyne and M. S. Strano, Observation of extreme phase transition temperatures of water confined inside isolated carbon nanotubes, Nature Nanotechnology, 12 (2017) 267-273; D. Bradley, Stiff water down the nanotubes, Materials Today 8 Dec. (2016). [Back]  [Back to Top to top of page]
  76. B. Wang, W. Jiang, X. Dai, Y. Gao, Z. Wang and R.-Q. Zhang, Molecular orbital analysis of the hydrogen bonded water dimer, Science Reports, 6 (2016) 22099; Corrigendum, Science Reports, 6 (2016) 29148. [Back].
  77. J. I. Katz, Reply to Burridge & Linden: Hot water may freeze sooner than cold, arXiv:1701.03219v2 [physics.pop-ph] 26 Jan 2017. [Back].
  78. R. P. Berkelaar, E. Dietrich, G. A. M. Kip, E. S. Kooij, H. J. W. Zandvliet and D. Lohse, Exposing nanobubble-like objects to a degassed environment, arXiv:1605.07405v1 [physics.flu-dyn] 24 May 2016. [Back].
  79. V. Leroy and T. Norisuye, Investigating the existence of bulk nanobubbles with ultrasound, ChemPhysChem , 17 (2016) 2787-2790; but this paper disagrees with the following earlier paper concerning the sizes of bubble detectable; A. H. G.Cents, D. W. F. Brilman, G. Versteeg, P. J Wijnstra and P. P. L. Regtien,Measuring bubble, drop and particle sizes in multiphase systems with ultrasound, AIChE Journal , 50 (2004) 2750-2762. [Back].
  80. J. Abraham, K. S. Vasu, C. D. Williams, K. Gopinadhan, Y. Su, C. T. Cherian, J. Dix, E. Prestat, S. J. Haigh, I. V. Grigorieva, P. Carbone, A. K. Geim and R. R. Nair, Tunable sieving of ions using graphene oxide membranes, Nature Nanotechnology Letters, (2017) Article in press, doi: 10.1038/NNANO.2017.21, [Back]
  81. S. Wildeman and C. Sun, Electric field makes Leidenfrost droplets take a leap Soft Matt. 12 (2016) 9622-9632. Niitsoo, Bouncing Leidenfrost droplets seem to defy gravity, Chemistry World, 14(2) (2017) 38. [Back]
  82. K. Umemoto and R. M. Wentzcovitch, First principles study of volume isotope effects in ices VIII and X, Japanese Journal of Applied Physics, 56 (2017) 05FA03. [Back]
  83. L. Dalstein, E. Potapova and E. Tyrode, The elusive silica/water interface: isolated silanols under water as revealed by vibrational sum frequency spectroscopy, Physical Chemistry Chemical Physics, (2017) Article in press, doi: 10.1039/c7cp01507k. [Back]
  84. J. Swiergiel and J. Jadzyn, Does water belong to the homologous series of hydroxyl compounds H(CH2)nOH? Physical Chemistry Chemical Physics, (2017) Article in press, doi: 10.1039/c7cp00750g. [Back]
  85. H. S. Ashbaugh, J. W. Barnett, A. Saltzman, M. E. Langrehr and H. Houser, Communication: Stiffening of dilute alcohol and alkane mixtures with water, Journal of Chem.l Phys. 145 (2016) 201102 ; J. Lara and J. E. Desnoyers, Isentropic compressibilities of alcohol-water mixtures at 25 °C, Journal of Solution Chemistry, 10 (1981) 465-478. [Back]
  86. Y. Gavrilov, J. D. Leuchter and Y. Levy, On the coupling between the dynamics of protein and water, Physical Chemistry Chemical Physics, 19 (2017) 8243-8257; A. Lábas, I. Bakó and J. Oláh , Hydration sphere structure of proteins: A theoretical study, Journal of Molecular Liquids, (2017) Article in press, doi:10.1016/j.molliq.2017.05.038. [Back]
  87. F. Palazzesi, M. Salvalaglio, A. Barducci and M. Parrinello, Communication: Role of explicit water models in the helix folding/unfolding processes, Journal of Chemical Physics,145 (2016) 12110. [Back]
  88. A. Roy, M. A. Hickner, H.-S. Lee, T. Glass, M. Paul, A. Badami, J. S. Riffle and J. E. McGrath, States of water in proton exchange membranes: Part A - Influence of chemical structure and composition, Polymer 111 (2017) 297-306. [Back]
  89. U. Novak and J. Grdadolnik, The hydration of Concanavalin A studied by infrared spectroscopy, Journal of Molecular Structure, 1135 (2017) 138-143. [Back]
  90. L. P. Singh, B. Issenmann and F. Caupin, Pressure dependence of viscosity in supercooled water and a unified approach for thermodynamic and dynamic anomalies of water, Proceedings of the National Academy of Sciences, (2017) Article in press, doi: 10.1073/pnas.1619501114. [Back, 2]
  91. W. C. Röntgen WC (1884) Ueber den Einfluss des Druckes auf die Viscosität der Flüssigkeiten, speciell des Wassers. Ann. Phys. 258 (1884) 510-518. P. W. Bridgman, The viscosity of liquids under pressure. Proceedings of the National Academy of Sciences, 11 (1925) 603-606. [Back]
  92. J. Catalán and J. A. Gonzalo, Liquid water changes its structure at 43 °C, Chemical Physics Letters, (2017) Article in press, doi: http://dx.doi.org/10.1016/j.cplett.2017.04.092. [Back, 2]
  93. Y. S. Zhang and A. Khademhosseini, Advances in engineering hydrogels, Science, 356 (2017) 500. [Back]
  94. Q. Sun and Y. Guo, Vibrational sum frequency generation spectroscopy of the air/water interface, Journal of Molecular Liquids, 213 (2016) 28-32. [Back, 2]
  95. R. V. Belosludov, K. V. Gets, O. S. Subbotin, R. K. Zhdanov, Y. Yu. Bozhko, V. R. Belosludov and J. Kudoh, Modeling the polymorphic transformations in amorphous solid ice, J. Alloys Compounds 707 (2017) 108-113. [Back]
  96. Q. Sun and Q. Wang, Hydrogen bonded networks in supercritical water, Journal of Physical Chemistry B 118 (2014) 11253-11258. [Back]
  97. H. Craig, R. F. Weiss and W. B. Clarke, Dissolved gases in the Pacific ocean, J. Geophys. Research 72 (1967) 6165-6181. [Back]
  98. F. Naqash, F. A. Masoodi, S. A. Rather, S. M. Wani and A. Gani, Emerging concepts in the nutraceutical and functional properties of pectin—A Review, Carbohydrate Polymers, 168 (2017) 227-239. [Back]
  99. V. Briega-Martos, E. Herrero and J. M.Feliu, Effect of pH and water structure on the oxygen reduction reaction on platinum electrodes,, Electrochim.Acta (2017) Article in press, doi: 10.1016/j.electacta.2017.04.162. [Back]
  100. A. V. Postnikov, I. V. Uvarov, M. V. Lokhanin and V. B. Svetovoy, Highly energetic phenomena in water electrolysis, Scientific Rep. 6 (2017) 39381, arXiv:1701.03927v1 [cond-mat.soft] 14 Jan 2017. [Back]

 

Home | Site Index | Site Map | Search | LSBU | Top

 

This page was established in 2016 and last updated by Martin Chaplin on 26 September, 2017


Creative Commons License
This work is licensed under a Creative Commons Attribution
-Noncommercial-No Derivative Works 2.0 UK: England & Wales License

 

The preferred Web Browser is Mozilla Firefox