Water site headerMasthead Island, Great Barrier Reef Print-me keygo to Water Visitor Book contributions
 Go to my page Water Structure and Science

Water Structure and Science References 2801 - 2900


  1. K. Meister, S. Strazdaite, A. L. DeVries, S. Lotze, L. L. C. Olijve, I. K. Voets, and H. J. Bakker, Observation of ice-like water layers at an aqueous protein surface, PNAS 111 (2014 ) 17732–17736. [Back]
  2. Y-C. Liou, A. Tocilj, P. L. Davies and Z. Jia, Mimicry of ice structure by surface hydroxyls and water of a β-helix antifreeze protein, Nature 406 (2000) 322‑328. [Back]
  3. C. C. M. Groot and H. J. Bakker, Proteins take up water before unfolding, J. Phys. Chem. Lett. 7 (2016) 1800-1804. [Back]
  4. Z. Zhang , W. Jiang , B. Wang and Z. Wang, Quantitative contribution of molecular orbitals to hydrogen bonding in a water dimer: Electron density projected integral (EDPI) analysis, Chem. Phys. Lett. 678 (2017) 98-101; Z. Zhang , W. Jiang , B. Wang and Z. Wang, Electronic structure contribution to hydrogen bonding interaction of a water dimer, arXiv:1611.02171 (2016) (physics.chem-ph). [Back]
  5. M. Bar Dolev, R. Bernheim, S. Guo, P. L. Davies and I. Braslavsky, Putting life on ice: bacteria that bind to frozen water. J. R. Soc. Interface, 13 (2016) 20160210. http://dx.doi.org/10.1098/rsif.2016.0210; C. P. Garnham, R. L. Campbell and P. L. Davies, Anchored clathrate waters bind antifreeze proteins to ice, PNAS 108 (2011) 7363-7367. [Back]
  6. D. Zong, H. Hu, Y. Duan and Y. Sun, Viscosity of water under electric field: anisotropy induced by redistribution of hydrogen bonds, J. Phys. Chem. B 120 (2016) 4818-4827. [Back]
  7. L. A. Bagatolli and R. P. Stock, The cell as a gel: materials for a conceptual discussion, Physiol. Mini Rev. 9,5 (2016) 38-49. [Back]
  8. D. Florea, S. Musa, J. M. R. Huyghe and H. M. Wyss, Long-range repulsion of colloids driven by ion exchange and diffusiophoresis, PNAS 111 (2014) 6554-6559; S. Musa, D. Florea, H. M. Wyss and J. M. Huyghe, Convection associated with exclusion zone formation in colloidal suspensions, Soft Matter 12 (2016) 1127-1132. [Back]
  9. H. C. Burridge and P. F. Linden, Questioning the Mpemba effect: hot water does not cool more quickly than cold
    Sci. Rep. 6 (2016) 37665; subject to criticism in E. Stoye, Mpemba effect in hot water, Chem. World 14 (2017) 49. [Back]
  10. B. Wojciechowski, I. Owczarek and G. Bednarz, Freezing of aqueous solutions containing gases, Cryst. Res. Technol. 23 (1988) 843-848. [Back]
  11. J.-S. Samson, R. Scheu, N. Smolentsev, S. W. Rick and S. Roke, Sum frequency spectroscopy of the hydrophobic nanodroplet/water interface: Absence of hydroxyl ion and dangling OH bond signatures, Chem. Phys. Lett. 615 (2014) 124-131. [Back]
  12. S. Chakrabarty and E. R. Williams, The effect of halide and iodate anions on the hydrogen-bonding network of water in aqueous nanodrops, Phys. Chem. Chem. Phys.18 (2016) 25483. [Back]
  13. J. Liu J. Hou, Ji. Xu, H. Liu, G. Chen and J. Zhang, Formation of clathrate cages of sI methane hydrate revealed by ab initio study, Energy (2016) Article in press, http://dx.doi.org/10.1016/j.energy.2016.11.120. [Back]
  14. M.. Madygulov, A. N. Nesterov, A. M. Reshetnikov, V. A. Vlasov and A.G. Zavodovsky, Study of gas hydrate metastability andi ts decay for hydrates amples containing unreacted supercooled liquid water below the ice melting point using pulse NMR, Chem.Engi. Sci. 137 (2015) 287-292. [Back]
  15. J. Moffat, V. J. Morris, S. Al-Assaf and A. P. Gunning, Visualisation of xanthan conformation by atomic force microscopy, Carbohydr. Polymers 148 (2016) 380-389. [Back]
  16. S. Shimizu and N. Matubayasi, The origin of cooperative solubilisation by hydrotropes, Phys. Chem. Chem. Phys.18 (2016) 25621. [Back]
  17. Y.-H. Ahn, H. K. D.-Y. Koh and H. Lee, Experimental verifications of Mpemba-like behaviors of clathrate hydrates, Korean J. Chem. Eng. 32 (2015) 1-5. [Back]
  18. C. T. Wolke, J. A. Fournier, L. C. Dzugan, M. R. Fagiani, T. T. Odbadrakh, H. Knorke, K. D. Jordan, A. B. McCoy, K. R. Asmis and M. A. Johnson, Spectroscopic snapshots of the proton-transfer mechanism in water, Science 354 (2016) 1131-1135; S. S. Xantheas, Spying on the neighbors poolr, Science 354 (2016) 1101. [Back]
  19. P. L. Davies, Ice-binding proteins: a remarkable diversity of structures for stopping and starting ice growth, Trends Biochem. Sci. 39 (2014) 548-556. [Back]
  20. M. Schauperl, M. Podewitz, B. J. Waldner and K. R. Liedl, Enthalpic and entropic contributions to hydrophobicity, J. Chem.Theory Comput.12 (2016) 4600-4610. [Back]
  21. J. R. Espinosa, A. Zaragoza, P. Rosales-Pelaez, C. Navarro, C.Valeriani, C. Vega and E. Sanz, Interfacial free energy as the key to the pressure-induced deceleration of ice nucleation, Phys. Rev. Lett. 117 (2016) 135702. [Back]
  22. N. F. Bunkin and F. V. Bunkin, Bubston structure of water and electrolyte aqueous solutions, Physics - Uspekhi 59 (2016) 846- 865; first published in Uspekhi Fizicheskikh Nauk 186 2016) 933-952. [Back]
  23. M. Lasich, A. H. Mohammadi and D. Ramjugernath, Factors influencing clathrate hydrate stability in equilibrium with liquid water: Insights from information-based statistical analysis, J. Mol. Liquids 222 (2016) 8-13. [Back]
  24. F. Mallamace, C. Corsaro, D. Mallamace, S. Vasi and H. E. Stanley, NMR spectroscopy study of local correlations in water. J. Chem. Phys. 145 (2016) 214503. [Back]
  25. Y. T. Yao . K. L. Alderson and A. Alderson, Modeling of negative Poisson’s ratio (auxetic) crystalline cellulose Ib, Cellulose 23 (2016) 3429-3448. [Back]  [Back to Top to top of page]
  26. C. Doehring and A. Sundrum, Efficacy of homeopathy in livestock according to peer-reviewed publications from 1981 to 2014, Veterinary Record (2016) doi:10.1136/vr.10377. [Back]
  27. T. Buchecker, S. Krickl, R. Winkler, I. Grillo, P. Bauduin, D. Touraud, A. Pfitzner and W. Kunz, The impact of the structuring of hydrotropes in water on the mesoscale solubilisation of a third hydrophobic component, Phys. Chem. Chem. Phys. (2016) Article in press, doi: 10.1039/c6cp06696h. [Back]
  28. T. Hutter, C. Gimbert, F. Bouchard and F.-J. Lapointe, Being human is a gut feeling, Microbiome 3:9 (2015) Article in press, doi: 10.1186/s40168-015-0076-7. [Back]
  29. J. W. McRorie, Understanding the physics of functional fibers in the gastrointestinal tract: an evidence-based approach to resolving enduring misconceptions about insoluble and soluble fiber, J. Acad. Nutr. Diet. (2016) doi: 10.1016/j.jand.2016.09.021. [Back]
  30. C. S. Choe, J. Lademann and M. E. Darvin, Depth profiles of hydrogen bound water molecule types and their relation to lipid and protein interaction in the human stratum corneum in vivo, Analyst 141 (2016) 6329-6337. [Back]
  31. H.-C. Chen, F.-D. Mai, B.-J. Hwang, M.-J. Lee, C.-H. Chen, S.-H. Wang, H.-Y. Tsai, C.-P. Yang and Y.-C. Liu, Creation of electron-doping liquid water with reduced hydrogen bonds, Sci. Rep. 6 (2016) 22166. [Back]
  32. S. Cancelos, G. Villamizar, A. Saavedra-Ruiz, W. Garcia-Rodriguez, P. T. Filoni and C. Marin, Experiments with nano-scaled helium bubbles in water subjected to standing acoustic fields. Nucl. Eng. Des. (2016) Article in press, doi.: 10.1016/j.nucengdes.2016.10.042. [Back]
  33. C. Marcolli, B. Nagare, A. Welti and U. Lohmann, Ice nucleation efficiency of AgI: review and new insights, Atmos. Chem. Phys. Discuss. (2016 ) Article in press, doi:10.5194/acp-2016-142. [Back]
  34. M. Hellström and J. Behler, Structure of aqueous NaOH solutions: insights from neural-network-based molecular dynamics simulations. (2016) Article in press, doi: 10.1039/c6cp06547c. [Back]
  35. J.-Y. Li, Z.-Q. Wu, J.-J. Xu, H.-Y. Chen and X.-H. Xia, Water transport within carbon nanotubes on a wave, Phys.Chem.Chem.Phys. 18 (2016) 33204-33210. [Back]
  36. C. Drechsel-Grau and D. Marx, Collective proton transfer in ordinary ice: local environments, temperature dependence and deuteration effects, (2016) Article in press, doi: 10.1039/c6cp05679b. [Back]
  37. L. De Marco, J. A. Fournier, M. Thämer, W. Carpenter and A Tokmakoff, Anharmonic exciton dynamics and energy dissipation in liquid water from two dimensional infrared spectroscopy, J. Chem. Phys. 145 (2016) 094501. [Back]
  38. G. Némethy and H. A. Scheraga, Structure of water and hydrophobic bonding in proteins. IV. The thermodynamic properties of liquid deuterium oxide, J. Chem. Phys. 41 (1964) 680-689. [Back]
  39. W. Zheng, A. Borgia, K. Buholzer, A. Grishaev, B. Schulerand R. B. Best, Probing the action of chemical denaturant on an intrinsically disordered protein by simulation and experiment, J. Am. Chem. Soc. 138 (2016) 11702-11713. [Back]
  40. M. C. Tourell and K. I. Momot, Molecular dynamics of a hydrated collagenpeptide: insights into rotational motion and residence times of single-water bridges in collagen, J. Phys. Chem. B,120 (2016) 12432-12443. [Back]
  41. I. Tah and J. Mondal, How does a hydrophobic macromolecule respond to mixed osmolyte environment? J. Phys. Chem. B, 120 (2016) 10969-10978. [Back]
  42. M. A. Sánchez, T. Kling, T. Ishiyam, M.-J. van Zadel, P. J. Bisson, M. Mezger, M. N. Jochum, J. D. Cyrana W. J. Smit, H. J. Bakker, M. J. Shultz, A. Morita, D. Donadio, Y. Nagata, M. Bonn and E. H. G. Backus,, Experimental and theoretical evidence for bilayer-by bilayer surface melting of crystalline ice,PNAS 114 (2017) 227–232; A. Michaelides and B. Slater, Melting the ice one layer at a time, PNAS 114 (2017) 195-197. [Back]
  43. A. Fernández, Non-Debye frustrated hydration steers biomolecular association: Interfacial tension for the drug designer, FEBS Lett. 590 (2016) 3481-3491. [Back]
  44. T. Ohto, J. Hunger, E. Backus, W. Mizukami, M. Bonn and Y. Nagata, Trimethylamin-N-oxide: Hydration structure, surface activity, and biological function viewed by vibrational spectroscopies and molecular dynamics simulations, Phys. Chem. Chem. Phys. (2017) Article in press, doi: 10.1039/C6CP07284D. [Back]
  45. M. P. M. Marques, A. L. M. B. de Carvalho, V. G. Sakai, L. Hatterd and L. A. E. B. de Carvalhoa, Intracellular water – an overlooked drug target?nCisplatin impact in cancer cells probed by neutrons, Phys. Chem. Chem. Phys. (2017) Article in press, doi: 10.1039/c6cp05198g. [Back]
  46. M. R. Hilaire, R. M. Abaskharon and F. Gai, Biomolecular crowding arising from small molecules, molecular constraints, surface packing, and nano-confinement, J. Phys. Chem. Lett. 6 (2015) 2546-2553. [Back]
  47. J. Chen, X. Gong, C. Zeng, Y. Wang and G. Zhang, Mechanical insight into resistance of betaine to urea-induced protein denaturation, J. Phys. Chem. B 120 (2016) 12327-12333. [Back]
  48. K. Shiraga, Y. Ogawa and N. Kondo, Hydrogen bond network of water around protein investigated with terahertz and infrared spectroscopy, Biophys. J. 111 ( 2016) 2629-2641; D. Laage, T. Elsaesser and J. T. Hynes, Perspective: Structure and ultrafast dynamics of biomolecular hydration shells, Structural Dynamics 4 (2017) 044018; O. Carugoa, Protein hydration: Investigation of globular protein crystal structures, Int. J. Biol. Macromol. 99 (2017) 160-165. [Back]
  49. E. Gianti, L. Delemotte, M. L. Klein and V. Carnevale, On the role of water density fluctuations in the inhibition of a proton channel, PNAS 113 (2016) E8359-E8368. [Back]
  50. J. Grdadolnik, F. Merzel,and F. Avbelj,, in of hydrophobicity and enhanced water hydrogen bond strength near purely hydrophobic solutes, PNAS 114 (2017) 322-327. [Back, 2]  [Back to Top to top of page]
  51. L. Erlbeck, M. Rädle, R. Nessel, F. Illner, W.Müller, K. Rudolph, T. Kunz and F.-J. Methner, Investigation of the depletion of ions through freeze desalination, Desalination 407 (2017) 93-102. [Back]
  52. R. Naohara, K. Narita and T. Ikeda-Fukazawa, Change in hydrogen bonding structures of a hydrogel with dehydration, Chem. Phys. Lett. 670 (2017) 84-88. [Back]
  53. T. H. Jang, S. C. Park, J. H. Yang, J. Y. Kim, J. H. Seok, U. S. Park, C. W. Choi, S. R. Lee, J. Han, Cryopreservation and its clinical applications, Integrative Medicine Res. (2017), Article in press, doi: 10.1016/j.imr.2016.12.001. [Back]
  54. S. Ishikawa and N. Tsuchiya, Structure of interfacial water on quartz and its self-diffusion coefficient revealed by molecular dynamics simulations, Procedia Earth Planetary Sci. 17 (2017) 853-856. [Back]
  55. T. H. Kim,, P. Mehrabi, Z. Ren, A. Sljoka, C. Ing, A. Bezginov, L. Ye, R. Pomès, R. S. Prosser and E. F. Pai, The role of dimer asymmetry and protomer dynamics in enzyme catalysis, Science 355 (2017) 262; T. Saleh and C. G. Kalodimos, Enzymes at work are enzymes in motion, Science 355 (2017) 247-248. [Back]
  56. J. Heyda, H. I. Okur, J. Hladílková, K. B. Rembert, W. Hunn, T. Yang, J. Dzubiella, P. Jungwirth and P. S. Cremer, Guanidinium can both cause and prevent the hydrophobic collapse of biomacromolecules, J. Am. Chem. Soc. 139 (2017) 863-870. [Back]
  57. P. Sripa, A. Tongraar and T. Kerdcharoen, Characteristics of K+ and Rb+ as ‘‘structure-breaking” ions in dilute aqueous solution: Insights from ONIOM-XS MD simulations, Chem. Phys. 479 (2016) 72–80. [Back]
  58. J. D. Miller, X. Wang, J. Jin and K. Shrimali, Interfacial water structure and the wetting of mineral surfaces, Int. J. Mineral Process. 156 (2016) 62-68. [Back]
  59. T. G. Leighton, The acoustic bubble: Ocean, cetacean and extraterrestrial acoustics, and cold water cleaning, IOP Conf. Series: J. Physics: Conf. Ser. 797 (2017) 012001. [Back]
  60. A. D. Fortes, I. G. Wood, D. Grigoriev, M. Alfredsson, S. Kipfstuhl, K. S. Knight and R. I. Smith, No evidence for large-scale proton ordering in Antarctic ice from powder neutron diffraction, J. Chem. Phys. 120 (2004) 11376-11379. [Back]
  61. J. J. Shephard, S. Ling, G. C. Sosso, A. Michaelides, B. Slater and C. G. Salzmann, Is high-density amorphous ice simply a ‘Derailed’ state along the ice I to ice IV pathway? arXiv:1701.05398 [cond-mat.mtrl-sci]. [Back, 2]
  62. Y. Huang, C. Zhu, L. Wang, J. Zhao and X. C. Zeng, Prediction of a new ice clathrate with record low density: A potential candidate as ice XIX in guest-free form, Chem. Phys. Lett. 671 (2017) 186-191. [Back]
  63. A.Kiselev, F. Bachmann, P. Pedevilla, S. J. Cox, A. Michaelides, D. Gerthsen and T. Leisner, Active sites in heterogeneous ice nucleation—the example of K-rich feldspars, Science 355 (2017) 367-371; J. Murray, Cracking the problem of ice nucleation, Science 355 (2017) 346-347. [Back]
  64. A. A. Zavitsas, The nature of aqueous solutions: Insights into multiple facets of chemistry and biochemistry from freezing-point depressions, Chem. Eur. J. 16 (2010) 5942-5960; A. A. Zavitsas, Comment on “The size and structure of selected hydrated ions and implications for ion channel selectivity” by Z.-H. Yang, RSC. Adv., 2015, 5, 1213, RSC Adv. 6 (2016) 92771-92777. [Back, 2]
  65. M. Tyagi and S. S. N. Murthy, Dielectric relaxation in ice and ice clathrates and its connection to the low temperature phase vtransition induced by alkali hydroxides as dopants, J. Phys. Chem. A 106 (2002) 5072. [Back]
  66. T. Sugimoto, N. Aiga, Y. Otsuki, K. Watanabe and Y. Matsumoto, Emergent high-Tc ferroelectric ordering of strongly correlated and frustrated protons in a heteroepitaxial ice film, Nature Phys. (2016) Article published on line, doi: 10.1038/nphys3820; I. A. Ryzhkin, Not obeying the rules, Nature Phys. (2016) Article published on line, doi: 10.1038/nphys3853. [Back]
  67. J. A. Ripmeester and S. Alavi, Some current challenges in clathrate hydrate science: Nucleation, decomposition and the memory effect, Curr. Opin. Solid State Mater. Sci. 20 (2016) 344-351, [Back]
  68. J. Bella, B. Brodsky and H. M Bermanl, Hydration structure of a collagen peptide, Structure 3 (1995) 893-906, [Back]
  69. C. D. Syme, J. Mosses, M. González-Jiménez, O. Shebanova, F. Walton and K. Wynne, Frustration of crystallisation by a liquid–crystal phase, Sci. Rep. 7 (2017) 42439; doi: 10.1038/srep42439. [Back]
  70. F. Mallamace, C, Corsaro, D, Mallamace, S. Vasi and H. E. Stanley, NMR spectroscopy study of local correlations in water, J. Chem. Phys. 145 (2016) 214503. [Back]
  71. S. Giuffrida, G. Cottone and L. Cordone, The water association band as a marker of hydrogen bonds in trehalose amorphous matrices, Phys.Chem.Chem.Phys. 19 (2017) 4251-4265. [Back]
  72. P. R. Smirnov and O. V. Grechin, Structure of concentrated aqueous solutions of scandium chloride, J. Phys. Chem. A, . 91 (2017) 517-520, originally published in Zh. Fiz. Khim. 91 (2017) 474-478. [Back]
  73. P. Muthukumar and D. V. N. Lakshmi, Nucleation enhancement studies on aqueous salt solutions, Energy Procedia 109 (2017) 174-180. [Back]
  74. Y. Nosaka, M. Hirabayashi, T. Kobayashi and E.Tokunaga, Gigantic optical Pockels effect in water within the electric double layer at the electrode-solution interface, Phys. Rev. B 77 (2008) 241401. [Back]
  75. K. V. Agrawal, S. Shimizu, L. W. Drahushuk, D. Kilcoyne and M. S. Strano, Observation of extreme phase transition temperatures of water confined inside isolated carbon nanotubes, Nature Nanotech. 12 (2017) 267-273; D. Bradley, Stiff water down the nanotubes, Materials Today 8 Dec. (2016). [Back]  [Back to Top to top of page]
  76. B. Wang, W. Jiang, X. Dai, Y. Gao, Z. Wang and R.-Q. Zhang, Molecular orbital analysis of the hydrogen bonded water dimer, Sci. Rep. 6 (2016) 22099; Corrigendum, Sci. Rep. 6 (2016) 29148. [Back].
  77. J. I. Katz, Reply to Burridge & Linden: Hot water may freeze sooner than cold, arXiv:1701.03219v2 [physics.pop-ph] 26 Jan 2017. [Back].
  78. R. P. Berkelaar, E. Dietrich, G. A. M. Kip, E. S. Kooij, H. J. W. Zandvliet and D. Lohse, Exposing nanobubble-like objects to a degassed environment, arXiv:1605.07405v1 [physics.flu-dyn] 24 May 2016. [Back].
  79. V. Leroy and T. Norisuye, Investigating the existence of bulk nanobubbles with ultrasound, ChemPhysChem , 17 (2016) 2787-2790; but this paper disagrees with the following earlier paper concerning the sizes of bubble detectable; A. H. G.Cents, D. W. F. Brilman, G. Versteeg, P. J Wijnstra and P. P. L. Regtien,Measuring bubble, drop and particle sizes in multiphase systems with ultrasound, AIChE J. 50 (2004) 2750-2762. [Back].
  80. J. Abraham, K. S. Vasu, C. D. Williams, K. Gopinadhan, Y. Su, C. T. Cherian, J. Dix, E. Prestat, S. J. Haigh, I. V. Grigorieva, P. Carbone, A. K. Geim and R. R. Nair, Tunable sieving of ions using graphene oxide membranes, Nature Nanotech. Letters (2017) Article in press, doi: 10.1038/NNANO.2017.21, [Back]
  81. S. Wildeman and C. Sun, Electric field makes Leidenfrost droplets take a leap Soft Matt. 12 (2016) 9622-9632. Niitsoo, Bouncing Leidenfrost droplets seem to defy gravity, Chem. World, 14(2) (2017) 38. [Back]
  82. K. Umemoto and R. M. Wentzcovitch, First principles study of volume isotope effects in ices VIII and X, Jap. J. App. Phys. 56 (2017) 05FA03. [Back]
  83. L. Dalstein, E. Potapova and E. Tyrode, The elusive silica/water interface: isolated silanols under water as revealed by vibrational sum frequency spectroscopy, Phys. Chem. Chem. Phys. (2017) Article in press, doi: 10.1039/c7cp01507k. [Back]
  84. J. Swiergiel and J. Jadzyn, Does water belong to the homologous series of hydroxyl compounds H(CH2)nOH? Phys. Chem. Chem. Phys. (2017) Article in press, doi: 10.1039/c7cp00750g. [Back]
  85. H. S. Ashbaugh, J. W. Barnett, A. Saltzman, M. E. Langrehr and H. Houser, Communication: Stiffening of dilute alcohol and alkane mixtures with water, J. Chem.l Phys. 145 (2016) 201102 ; J. Lara and J. E. Desnoyers, Isentropic compressibilities of alcohol-water mixtures at 25 °C, J. Solution Chem. 10 (1981) 465-478. [Back]
  86. Y. Gavrilov, J. D. Leuchter and Y. Levy, On the coupling between the dynamics of protein and water, Phys. Chem. Chem. Phys. 19 (2017) 8243-8257; A. Lábas, I. Bakó and J. Oláh , Hydration sphere structure of proteins: A theoretical study, J. Mol. Liq. (2017) Article in press, doi:10.1016/j.molliq.2017.05.038. [Back]
  87. F. Palazzesi, M. Salvalaglio, A. Barducci and M. Parrinello, Communication: Role of explicit water models in the helix folding/unfolding processes, J. Chem. Phys. 145 (2016) 12110. [Back]
  88. A. Roy, M. A. Hickner, H.-S. Lee, T. Glass, M. Paul, A. Badami, J. S. Riffle and J. E. McGrath, States of water in proton exchange membranes: Part A - Influence of chemical structure and composition, Polymer 111 (2017) 297-306. [Back]
  89. U. Novak and J. Grdadolnik, The hydration of Concanavalin A studied by infrared spectroscopy, J. Mol. Structure 1135 (2017) 138-143. [Back]
  90. L. P. Singh, B. Issenmann and F. Caupin, Pressure dependence of viscosity in supercooled water and a unified approach for thermodynamic and dynamic anomalies of water, PNAS (2017) Article in press, doi: 10.1073/pnas.1619501114. [Back, 2]
  91. W. C. Röntgen WC (1884) Ueber den Einfluss des Druckes auf die Viscosität der Flüssigkeiten, speciell des Wassers. Ann. Phys. 258 (1884) 510-518. P. W. Bridgman, The viscosity of liquids under pressure. PNAS 11 (1925) 603-606. [Back]
  92. J. Catalán and J. A. Gonzalo, Liquid water changes its structure at 43 °C, Chem. Phys. Lett. (2017) Article in press, doi: http://dx.doi.org/10.1016/j.cplett.2017.04.092. [Back, 2]
  93. Y. S. Zhang and A. Khademhosseini, Advances in engineering hydrogels, Science 356 (2017) 500. [Back]
  94. Q. Sun and Y. Guo, Vibrational sum frequency generation spectroscopy of the air/water interface, J. Mol. Liquids 213 (2016) 28-32. [Back, 2]
  95. R. V. Belosludov, K. V. Gets, O. S. Subbotin, R. K. Zhdanov, Y. Yu. Bozhko, V. R. Belosludov and J. Kudoh, Modeling the polymorphic transformations in amorphous solid ice, J. Alloys Compounds 707 (2017) 108-113. [Back]
  96. Q. Sun and Q. Wang, Hydrogen bonded networks in supercritical water, J. Phys. Chem. B 118 (2014) 11253-11258. [Back]
  97. H. Craig, R. F. Weiss and W. B. Clarke, Dissolved gases in the Pacific ocean, J. Geophys. Res. 72 (1967) 6165-6181. [Back]
  98. F. Naqash, F. A. Masoodi, S. A. Rather, S. M. Wani and A. Gani, Emerging concepts in the nutraceutical and functional properties of pectin—A Review, Carbohydr. Polym. 168 (2017) 227-239. [Back]
  99. V. Briega-Martos, E. Herrero and J. M.Feliu, Effect of pH and water structure on the oxygen reduction reaction on platinum electrodes,, Electrochim.Acta (2017) Article in press, doi: 10.1016/j.electacta.2017.04.162. [Back]
  100. A. V. Postnikov, I. V. Uvarov, M. V. Lokhanin and V. B. Svetovoy, Highly energetic phenomena in water electrolysis, Scientific Rep. 6 (2017) 39381, arXiv:1701.03927v1 [cond-mat.soft] 14 Jan 2017. [Back]


Home | Site Index | Site Map | Search | LSBU | Top


This page was established in 2016 and last updated by Martin Chaplin on 15 August, 2017

Creative Commons License
This work is licensed under a Creative Commons Attribution
-Noncommercial-No Derivative Works 2.0 UK: England & Wales License