Water site headerMasthead Island, Great Barrier Reef Print-me keygo to Water Visitor Book contributions
 Go to my page Water Structure and Science

Water Structure and Science References 2901 - 3000

 

  1. J. Jia, Y. Liang, T. Tsuji, Murata and T. Matsuoka, Elasticity and stability of clathrate hydrate: Role of guest molecule motions, Sci. Rep. 7 (2017) 1290. [Back]
  2. A. M. Rice, M. K. Rosen, ATP controls the crowd, Science 356 (2017) 701-702; A. Patel, L. Malinovska, S. Saha, J. Wang, S. Alberti, Y. Krishnan, A. A. Hyman, ATP as a biological hydrotrope Science 356 (2017) 753-756. [Back]
  3. E. Leontidis, Chaotropic salts interacting with soft matter: Beyond the lyotropic series, Curr. Opin. Colloid & Interface Sci. 23 (2016) 100-109. [Back]
  4. A. Gurung, O. Dahl and K. Jansson, The fundamental phenomena of nanobubbles and their behavior in wastewater treatment technologies, Geosystem Eng. 19 (2016) 133-142. [Back]
  5. M. Ghasemi, M. Tsianou and P. Alexandridis, Assessment of solvents for cellulose dissolution Bioresource Techn. 228 (2017) 330–338. [Back]
  6. V. V. da Cruz, E. Ertan, R. C. Couto, S. Eckert,,M. Fondell, M.Dantz, B. Kennedy, T. Schmitt, A. Pietzsch, F. F. Guimarães, H. Ågren, F. Gel’mukhanov, M. Odelius, A. Föhlisch and Victor Kimberg, A study of the water molecule using frequency control over nuclear dynamics in resonant X-ray scattering, Phys. Chem. Chem. Phys. (2017) Article in press, doi: 10.1039/c7cp01215b. [Back]
  7. J. Chen, G. Schusteritsch, C. J. Pickard, C. G. Salzmann and A. Michaelides, Double-layer ice from first principles, Phys. Rev B 95 (2017) 094121. [Back]
  8. Y. Qin, L. Zhang, .L. Wang and D. Zhong, Observation of the global dynamic collectivity of a hydration shell
    around apomyoglobin, J. Phys. Chem. Lett. 8 (2017) 1124-1131. [Back]
  9. M. J. Nine, M. A. Cole, L. Johnson, D. N. H. Tran and D. Losic, Robust superhydrophobic graphene-based composite coatings with self-cleaning and corrosion barrier properties, ACS Appl. Mater. Interfaces 7 (2015) 28482-28493. [Back]
  10. P. Fibert, C. Relton, M. Heirs and D. Bowden, A comparative consecutive case series of 20 children with a diagnosis of ADHD receiving homeopathic treatment, compared with 10 children receiving usual care, Homeopathy 105 (2016) 194-201. [Back]
  11. S. J. Cartwright, Solvatochromic dyes detect the presence of homeopathic potencies, Homeopathy 105 (2016) 55-65. [Back]
  12. M. Kulkarni and A. Mukherjee, Understanding B-DNA to A-DNA transition in the right-handed DNA helix: Perspective from a local to global transition, Progr. Biophys. Mol. Biol. (2017) Artiocle in press, doi: 10.1016/j.pbiomolbio.2017.05.009. [Back]
  13. L. Noirez and P. Baroni, Identification of a low-frequency elastic behaviour in liquid water, J. Phys.: Condens. Matter 24 (2012) 372101; P. Baroni, P.Bouchet and L. Noirez, Highlighting a cooling regime in liquids under submillimeter flows, J. Phys. Chem. Lett. 4 (2013) 2026-2029. [Back, 2]
  14. K. Akoa, Influence of osmotic and weight pressure on water release frompolysaccharide ionic gels, Carbohydr. Polym. 169 (2017) 376-384. [Back]
  15. M. L. Liriano, C. Gattinoni, E. A. Lewis, C. J. Murphy, E. C. H. Sykes and A. Michaelides, Water−ice analogues of polycyclic aromatic hydrocarbons: Water nanoclusters on Cu(111), J. Am. Chem. Soc.139 (2017) 6403-6410. [Back]
  16. M. L. McDermott, H. Vanselous, S. A. Corcelli and P. B. Petersen, DNA's chiral spine of hydration, ACS Centr. Sci., 3 (2017) 708-714; E. A. Perets and E. C. Y. Yan, The H2O helix: The chiral water superstructure surrounding DNA, ACS Cent. Sci. 3 (2017) 683-685; P. Ball, DNA helix has chiral water ‘spine’, Chem. World 14(7) (2017) 43. [Back]
  17. A. Hospital, M. Candotti, J. L. Gelpí and M. Orozco, The multiple roles of waters in protein solvation, J. Phys. Chem. B, 121 (2017) 3636-3643. [Back]
  18. J. M. M. de Oca, J. A. R. Fris, S. R. Accordino, D. C. Malaspina and G. A. Appignanesi, Structure and dynamics of high- and low-density water molecules in the liquid and supercooled regimes, Eur. Phys. J. E 39 (2016) 124. [Back]
  19. C. R. C. Buhariwalla, R. K. Bowles, I. Saika-Voivod, F. Sciortino and P. H. Poole, Free energy of formation of small ice nuclei near the Widom line in simulations of supercooled water, Eur. Phys. J. E 38 (2015) 39. [Back]
  20. M. Allan and L.J. Mauer, Dataset of water activity measurements of alcohol:watersolutions using a Tunable Diode Laser, Data in Brief 12 (2017) 364-369. [Back]
  21. P. L. Privalov and C. Crane‑Robinson, Role of water in the formation of macromolecular structures, Eur. Biophys. J. 46 (2017) 203-224. [Back, 2, 3]
  22. A. Fernández and L. R. Scott, Opinion: Advanced modeling reconciles counterintuitive decisions in lead optimization, Trends Biotechnol. 35 (2017) 490-497. [Back]
  23. V. N. Syryamina and S. A. Dzuba, Dynamical transitions at low temperatures in the nearest hydration
    shell of phospholipid bilayers, J. Phys. Chem. B 121 (2017) 1026-1032. [Back]
  24. H. I. Okur, J. Hladílková, K. B. Rembert, Y. Cho, J. Heyda, J. Dzubiella, P.S. Cremer and P.Jungwirth, Beyond the Hofmeister series: Ion specific effects on proteins and their biological functions, J. Phys. Chem. B, 121 (2017) 1997-2014. [Back]
  25. K. Nomura, T. Kaneko, J. Baid, J. S. Francisco, K. Yasuoka and X. C. Zeng, Evidence of low-density and high-density liquid phases and isochore end point for water confined to carbon nanotube, PNAS 114 (2017) 4066-4071. [Back, 2] [Back to Top to top of page]
  26. K. Garajová, A. Balogová, E. Duseková, D. Sedláková, E. Sedlák and R. Varhaĉ, Correlation of lysozyme activity and stability in the presence of Hofmeister series anions, BBA - Proteins and Proteomics 1865 (2017) 281-288. [Back]
  27. Y. E. Altabet, A. Haji-Akbari and P. G. Debenedetti, Effect of material flexibility on the thermodynamics and kinetics of hydrophobically induced evaporation of water, PNAS   114 (2017) E2548-E2555. [Back]
  28. A. V. Anikeenko, E. D. Kadtsyn and N. N. Medvedev, Statistical geometry characterization of global structure of TMAO and TBA aqueous solutions, J. Mol. Liq. (2017) Article in press, http://dx.doi.org/10.1016/j.molliq.2017.06.001. [Back]
  29. Yu. D. Fomin, E. N. Tsiok, V. N. Ryzhov and V. V. Brazhkin, A novel anomalous region of water
    arXiv:1706.02923v1 [cond-mat.soft] 9 Jun 2017. [Back, 2
  30. F. Perakis, K. Amann-Winkel, F. Lehmkühler, M. Sprung, D. Mariedahl, J. A. Sellberg, H. Pathak, A. Späh, F. Cavalca, D. Schlesinger, A. Ricci, A. Jain, B. Massani, F. Aubree, C. J. Benmore, T. Loerting, G. Grübel , L. G. M. Pettersson and A. Nilsson, Diffusive dynamics during the high-to-low-density transition in amorphous ice, PNAS 114 (2017) 8193-8198; F. Sciortino, Which way to low-density liquid water? PNAS 114 (2017) 8141-8143. [Back, 2
  31. R. C. Remsing and J. D. Weeks, Dissecting hydrophobic hydration and association, J. Phys. Chem. B. 117 ( 2013) 15479-15491. [Back]
  32. H. Ren, S. R. German, M. A. Edwards, Q. Chen and H. S. White, Electrochemical generation of individual O2 nanobubbles via H2O2 oxidation, J. Phys. Chem. Lett. 8 (2017) 2450-2454. [Back]
  33. B. H. Tan, H. An and C.-D. Ohl, Resolving the pinning force of nanobubbles with optical microscopy, Phys. Rev. Lett. 118 (2017) 054501. [Back]
  34. Y. Liu, M. A. Edwards, S. R. German, Q. Chen and H. S. White, The dynamic steady state of an electrochemically generated nanobubble, Langmuir 33 (2017) 1845-1853. [Back]
  35. S. Singla, E. Anim-Danso, A. E Islam, Y. Ngo, S. S Kim, R. R. Naik and A. Dhinojwala, Insight on structure of water and ice next to graphene using surface-sensitive spectroscopy, ACS Nano 11 (2017) 4899-4906. [Back]
  36. K. Umemoto and R. M. Wentzcovitch, First principles study of volume isotope effects in ices VIII and X, Jap. J. Appl. Phys. 56 (2017) 05FA03. [Back]
  37. T. Temesgen, T. T. Bui, M. Han, T. Kim and H. Park, Micro and nanobubble technologies as a new horizon for water treatment techniques: A review, Adv. Coll. Interface Sci. (2017) Article in press, doi:
    10.1016/j.cis.2017.06.011. [Back]
  38. H. Peng, G. Dai, S. Wang and H. Xu, The evolution behavior and dissolution mechanism of cellulose in aqueous solvent, J. Mol. Liquids (2017) Article in press, doi: 10.1016/j.molliq.2017.06.103. [Back]
  39. A. Seyfi, R. Afzalzadeh and A.Hajnorouzi, Increase in water evaporation rate with increase in static magnetic field perpendicular to water-air interface, Chem.Eng. Processing (2017) Article in press, doi: 10.1016/j.cep.2017.06.009. [Back]
  40. A. E. Sitnitsky, Exactly solvable Schrödinger equation with double-well potential for hydrogen bond, Chem .Phys. Lett. 676 (2017) 169-173. [Back]
  41. N. Bidin, S. R. Azni, S. Islam, M. Abdullah, M. F. S. Ahmad, G. Krishnan, A. R. Johari, M. Aizat A. Bakar, N. S. Sahidan, N. Musa, M. F. Salebi, N. Razali and M. M. Sanagi, The effect of magnetic and optic field in water electrolysis, Int. J. Hydrogen Energy 42 (2017) 16325 -16332. [Back]
  42. H. Wada, J. Koido, S. Miyazawa, T. Mochizuki, K. Masuda, J. Unga, Y. Oda, R. Suzuki and K. Maruyama, Experimental analysis of behavior in nanobubbles using echograms under ultrasound exposure, Jap. J. Appl. Phys. 55 (2016) 07KF06. [Back]
  43. F. Nimmo, What is the Young's modulus of ice? Europa's Icy Shell,.The Workshop on Europa's icy shell: past, present and future, Houston (2004); M. P. Langleben, Young's modulus for sea ice, Can. J. Phys. 40 (1962) 1-8. [Back]
  44. J. M. J. van Leeuwen, Skating on slippery ice, arXiv:1706.08278v1 [cond-mat.other] 26 Jun 2017. [Back]
  45. Y. Fu, G. Wang, T. Mei, J. Li, J. Wang, and X. Wang, Accessible graphene aerogel for efficient harvesting solar energy, ACS Sustainable Chem. Eng. (2017) Article in press, doi: 10.1021/acssuschemeng.6b03207; K. Krämer, Floating graphene uses sunlight to cook up clean water, Chem. World 14(7) (2017) 41. [Back]
  46. C. Efthymiou, M. A. K. Williams and K. M. McGrath, Revealing the structure of high-water content biopolymer networks: Diminishing freezing artefacts in cryo-SEM images, Food Hydrocolloids (2017) Article in press, doi: 10.1016/j.foodhyd.2017.06.040. [Back]
  47. F. Smallenburg, L. Filion and F. Sciortino, Erasing no-man’s land by thermodynamically stabilizing the liquid–liquid transition in tetrahedral particles, Nature Phys. 10 (2014) 653-657. [Back]
  48. R. Etchepare, H. Oliveira, M. Nicknig, A. Azevedo and J. Rubio, Nanobubbles: Generation using a multiphase pump, properties and features in flotation, Minerals Eng. 112 (2017) 19-26. [Back]
  49. J. H. Ortony, B. Qiao, C. J. Newcomb, T. J. Keller, L. C. Palmer, E. Deiss-Yehiely, M. O. de la Cruz, S. Han and S. I. Stupp, Water dynamics from the surface to the interior of a supramolecular nanostructure, J. Am. Chem. Soc. 139 (2017) 8915-8921. [Back]
  50. S. Immel and F. W. Lichtenthaler, The hydrophobic topographies of amylose and its blue iodine complex, Starch/Stärke 52 (2000) 1-8. [Back] [Back to Top to top of page]
  51. R. D. Hancock and B. J. Tarbet, The other double helix—The fascinating chemistry of starch, J. Chem. Ed. 77 (2000) 988-992. [Back]
  52. P. Bampoulis, V. J. Teernstra, D. Lohse, H. J. W. Zandvliet and B. Poelsema, Hydrophobic ice confined between graphene and MoS2, J. Phys. Chem. C, 120 (2016) 27079-27084; arXiv:1706.00675v1 [physics.chem-ph] 2 Jun 2017. [Back]
  53. K. A. Rubinson, Practical corrections for p(H,D) measurements in mixed H2O/D2O biological buffers, Anal. Methods, 9 (2017) 2744-2750. [Back]
  54. N. Ishida, T. Inoue, M. Miyahara and K. Higashitani, Nano bubbles on a hydrophobic surface in water observed by tapping-mode atomic force microscopy. Langmuir, 16 (2000) 6377-6380. [Back]
  55. N. Smolentsev, W.J. Smit, H. J. Bakker and S. Roke, The interfacial structure of water droplets in a hydrophobic liquid, Nature Commun. 8 (2017) 15548. [Back]
  56. M. Henry, The hydrogen bond, Inference: Int. Rev. Sci. Chem. 1(2) (2015). [Back]
  57. P. L. Silvestrelli, Hydrogen bonding characterization in water and small molecules, J. Chem. Phys. 146 (2017) 244315; arXiv:1703.08542v1 [physics.chem-ph] 24 Mar 2017. [Back]
  58. S.An,, B. N. Joshi,, J.-G. Lee,, M. W. Lee, Y. I. Kim, M.. Kim, H. S. Jo and S. S. Yoon, A comprehensive review on wettability, desalination, and purification using graphene-based materials at water interfaces, Catalysis Today (2017) Article in press, doi: 10.1016/j.cattod.2017.04.027. [Back, 2, 3
  59. S. H. Oh and J.-M. Kim, Generation and stability of bulk nanobubbles, Langmuir (2017) Article in press, doi: 10.1021/acs.langmuir.7b00510. [Back]
  60. P. Kundu, S.-Y.Liu , F.-R. Chen and F.-G. Tseng, In-situ generation of highly stable, sub 10-nm oxygen nanobubbles in liquid environmental TEM, IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS) (2016) doi: 10.1109/MEMSYS.2016.7421576. [Back]
  61. I. J. Tyrovolas, Mpemba effect explanation, "Frontiers in Water Biophysics 2017" Erice, Sicily (2017) vixra.org/abs/1309.0076. [Back]
  62. N. Smolentsev, C. Lütgebaucks, H. I. Okur, A. G. F. de Beer and S. Roke, Intermolecular headgroup interaction and hydration as driving forces for lipid transmembrane asymmetry, J. Am. Chem. Soc. 138 (2016) 4053-4060. [Back]
  63. F. Martelli, H.-Y. Ko, C. C. Borallo and G. Franzese, Structural properties of water confined by phospholipid membranes, arXiv:1703.07835v1 [cond-mat.soft] 22 Mar 2017. [Back]
  64. M. Dinpajooh, D. R. Martin and D. V. Matyushov, Polarizability of the active site of cytochrome c reduces the activation barrier for electron transfer, Sci. Reports 6 (2016) 28152. [Back]
  65. T. P. Silverstein and S T. Heller, pKa values in the undergraduate curriculum: What Is the real pKa of water? J. Chem. Educ. 94 (2017) 690-695. [Back, 2, 3
  66. R. Starkey, J. Norman and M. HimeWho knows the Ka values of water and the hydronium ion? J. Chem. Educ. 63 (1986), 473-474. [Back]
  67. E. C. Meister, M. Willeke, W. Angst, A. Tognia and P. Walde, Confusing quantitative descriptions of BrønstedLowry acidbase equilibria in chemistry textbooks – A critical review and clarifications for chemical educators, Helvetica Chim. Acta 97 (2014) 1-31. [Back, 2]
  68. S. Lemke, P. H. Handle, L. J. Plaga, J. N. Stern, M. Seidl, V. Fuentes-Landete, K. Amann-Winkel, K. W. Köster, C. Gainaru, T. Loerting and R. Böhmer, Relaxation dynamics and transformation kinetics of deeply supercooled water: Temperature, pressure, doping and proton/deuteron isotope effects, J. Chem. Phys. 147 (2017) 034506. [Back]
  69. A. Hudait, M. T. Allen and V. Molinero, Sink or swim: ions and organics at the ice-air interface, J. Am. Chem. Soc. (2017) Article in press, doi: 10.1021/jacs.7b05233. [Back]
  70. R. Böhmer, K. L. Ngai, C. A. Angell and D. J. Plazek, Nonexponential relaxations in strong and fragile glass formers, J. Chem. Phys. 99 (1993) 4201-4209. [Back]
  71. A. L. Agapov, A. I. Kolesnikov, V. N. Novikov, R. Richert and A. P. Sokolov, Quantum effects in the dynamics of deeply supercooled water, Phys. Rev. E 91 (2015) 0223. [Back]
  72. J.-J. Max, P. Larouche and C. Chapados, Orthogonalyzed H2O and D2O species obtained from infrared spectra of liquid water at several temperatures, J. Mol. Structure (2017) Article in press, doi: 10.1016/j.molstruc.2017.07.084. [Back, 2]
  73. J. M. D. Coey, M. Möbius, A. J. Gillen and S. Sen, Generation and stability of freestanding aqueous microbubbles
    Electrochem. Commun.76 (2017) 38-41. [Back]
  74. V. Bianco, G. Franzese, C. Dellago and I. Coluzza, Role of water in the selection of stable proteins at ambient and extreme thermodynamic conditions, Phys. Rev. X 7 (2017) 021047. [Back]
  75. A. Pica and G. Graziano,, Shedding light on the extra thermal stability of thermophilic proteins, Biopolymers 105 (2016) 856-863. [Back] [Back to Top to top of page]
  76. A. E. Gleason, C. A. Bolme, E. Galtier, H. J. Lee, E. Granados, D. H. Dolan, C. T. Seagle, T. Ao, S. Ali, A. Lazicki, D. Swift, P. Celliers and W. L. Mao, Compression freezing kinetics of water to ice VII, Phys. Rev. Lett. 119 (2017) 025701; J. Wenz, Hot ice could have seeded life on Earth, New Scientist 22 July (2017) 9. [Back]
  77. C. Fang and R. Qiao, Surface hydration drives rapid water imbibition into strongly hydrophilic nanopores. Phys. Chem. Chem. Phys. (2017) Article in press, doi: 10.1039/c7cp02115a. [Back]
  78. R. Guerrero-Avilés and W Orellana, Energetics and diffusion of liquid water and hydrated ions through nanopores in graphene: ab initio molecular dynamics simulation, Phys. Chem. Chem. Phys. (2017) Article in press, doi: 10.1039/c7cp03449k. [Back, 2]
  79. N. Sakashita, H. C. Watanabe, T. Ikeda, K. Saito and H. Ishikita, Origins of water molecules in the photosystem II crystal structure, Biochemistry56 (2017) 3049-3057. [Back]
  80. J. Li, A. D. Celiz, J. Yang, Q. Yang, I. Wamala, W. Whyte, B. R. Seo, N. V. Vasilyev, J. J. Vlassak, Z. Suo, Tough adhesives for diverse wet surfaces, Science 357 (2017) 378-381. [Back]
  81. P. Zhang, J. Li, L. Lv, Y. Zhao and Liangti Qu, Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water, ACS Nano 11 (2017) 5087-5093; G. Prando, A steam nanogenerator, Nature Nanotechn. 12 (2017) 506. [Back]
  82. C. Pérez, A. L. Steber, A. M. Rijs, B. Temelso, G. C. Shields, J. C. Lopez, Z. Kisiel and M. Schnell, Corannulene and its complex with water: a tiny cup of water, Phys.Chem.Chem.Phys. 19 (2017) 14214-14223. [Back]
  83. L. Betti, G. Trebbi, M. O. Kokornaczyk, D. Nani, M. Peruzzi, G. Dinelli, P. Bellavite and M. Brizzi, Number of succussion strokes affects effectiveness of ultra-high-diluted arsenic on in vitro wheat germination and polycrystalline structures obtained by droplet evaporation method, Homeopathy 106 (2017) 47-54. [Back]
  84. Y. Tao, W. Zou and E. Kraka, Strengthening of hydrogen bonding with the push-pull effect, Chem. Phys. Lett. 685 (2017) 251-258. [Back]
  85. S. Indra and S. Daschakraborty, Mechanism of translational jump of a hydrophobic solute in supercooled water: Importance of presolvation, Chem. Phys. Lett. (2017) Article in press, doi: http://dx.doi.org/10.1016/j.cplett.2017.07.084. [Back]
  86. R. Govindarajan, K. Chatterjee, L. Gatlin, R. Suryanarayanan and E. V. Shalaev, Impact of freeze-drying on ionization of sulfonephthalein probe molecules in trehalose-citrate systems, J. Pharm. Sci. 95 (2006) 1498-1510. [Back]
  87. L. Vetráková, V. Vykoukal and D. Heger, Comparing the acidities of aqueous frozen, and freeze-dried phosphate
    buffers: Is there a “pH Memory” effect?. Int. J. Pharm. (2017) Article in press, http://dx.doi.org/10.1016/j.ijpharm.2017.08.005. [Back]
  88. H. Jia, China opens up new energy front as it succeeds in tapping gas hydrates, Chemistry World 14(8) (2017) 12. [Back]
  89. F. Dahms, B. P. Fingerhut, E. T. J. Nibbering, E. Pines and T. Elsaesser, Large-amplitude transfer motion of hydrated excess protons mapped by ultrafast 2D IR spectroscopy, Science 357 (2017) 491-495; F. Dahms, R. Costard, E. Pines, B. P. Fingerhut, E. T. J. Nibbering and T. Elsaesser, The hydrated excess proton in the Zundel cation H5O2+: The role of ultrafast solvent fluctuations, Angew. Chem. Int. Ed. 55 (2016) 10600-10605. [Back]
  90. J. A. Flores-Livas, A. Sanna, M. Graužinytė, A. Davydov, S. Goedecker and M. A. L. Marques, Emergence of superconductivity in doped H2O ice at high pressure, Sci. Rep. 7 (2016) 6825; arXiv:1610.04110 [cond-mat.supr-con] (2017). [Back]
  91. B. Lian, S. De Luca, Y. You, S. Alwarappan, M. Yoshimura, V. Sahajwalla, S.C. Smith, G. Leslie and R.K. Joshi, Extraordinary water adsorption characteristics of graphene oxide, arXiv:1707.09502v1 [cond-mat.mtrl-sci] (2017). [Back]
  92. N. Giovambattista, F. W. Starr and P. H. Poole, Infuence of sample preparation on the transformation of low-density to high-density amorphous ice: An explanation based on the Potential Energy Landscape, arXiv:1707.09947v1 [cond-mat.stat-mech] 31 Jul 2017. [Back]
  93. V. Holten, C. Qiu, E. Guillerm, M. Wilke, J. Ricka, M. Frenz and F. Caupin, Compressibility anomalies in stretched water and their interplay with density anomalies, arXiv:1708.00063v1 [physics.chem-ph] 31 Jul 2017. [Back, 2]
  94. I. Bakó, A. Lábas, K. Hermansson, Á. Bencsura and J. Oláh, How can we detect hydrogen bond local cooperativity in liquid water: A simulation study, J. Mol. Liquids (2017) Article in press, doi: 10.1016/j.molliq.2017.08.023. [Back]
  95. R. J. Speedy, Limiting forms of the thermodynamic divergences at the conjectured stability limits in superheated and supercooled water. J. Phys. Chem. 86 (1982):3002-3005. [Back]
  96. S. Sastry, P. G. Debenedetti, F. Sciortino and H. E. Stanley, Singularity-free interpretation of the thermodynamics of supercooled water. Phys. Rev. E. 53 (1996):6144-6154. [Back]
  97. R. Kumar, J. R. Schmidt and J. L. Skinner, Hydrogen bonding definitions and dynamics in liquid water, J. Chem. Phys. 126 (2007) 204107. [Back]
  98. E. Lang and H. D. Lüdemann, Pressure and temperature dependence of the longitudinal proton relaxation times in supercooled water to −87°C and 2500 bar, J. Chem. Phys. 67 (1977) 718-723. [Back]
  99. Y. Tao, W.Zou, J. Jia, W.Li and D. Cremer, The different ways of hydrogen bonding in water - Why does warm water freeze faster than cold water? J. Chem. Theory Comput. 13 (2017) 55-76. [Back, 2]
  100. Y. Ono, R. Futamura, Y. Hattori, T. Sakai and K. Kaneko, Adsorption-desorption mediated separation of low concentrated D2O from water with hydrophobic activated carbon fiber, J. Coll. Interface Sci. (2017) Article in press, doi: http://dx.doi.org/10.1016/j.jcis.2017.08.016. [Back]

 

Home | Site Index | Site Map | Search | LSBU | Top

 

This page was established in 2017 and last updated by Martin Chaplin on 15 August, 2017


Creative Commons License
This work is licensed under a Creative Commons Attribution
-Noncommercial-No Derivative Works 2.0 UK: England & Wales License