Water site headerMasthead Island, Great Barrier Reef Print-me keygo to Water Visitor Book contributions
 Go to my page Water Structure and Science

Water Structure and Science, References 3001- 3100

 

  1. W. J. Smit, F. Tang, Y.Nagata, M. A. Sánchez, T. Hasegawa, E. H. G. Backus, M. Bonn and H. J. Bakker, Observation and identification of a new OH stretch vibrational band at the surface of ice, Journal of Physical Chemistry Letters, 8 (2017) 3656-3660. [Back]
  2. K. M. Kovalov, O. M. Alekseev, M. M. Lazarenko, Y F. Zabashta, Y. E. Grabovskii and S. Y. Tkachov, Influence of water on the structure and dielectric properties of the microcrystalline and nano-cellulose, Nanoscale Research Letters, 12 (2017) 468. [Back]
  3. L. Fanga, X. Yin, L. Wu, Y. He, Y. He, W. Qin, F. Meng, P. York, X. Xu and J. Zhana, Classification of microcrystalline celluloses via structures of individual particles measured by synchrotron radiation X-ray micro computed tomography, International Journal of Pharmaceutics, (2017) Article in press, doi: 10.1016/j.ijpharm.2017.05.019 [Back]
  4. J. Nsor-Atindana, M. Chen, H. D. Goff, F. Zhong, H. R. Sharif and Y. Li, Functionality and nutritional aspects of microcrystalline cellulose in food, Carbohydrate Polymers 172 (2017) 159-174. [Back]
  5. D. Trache, M. H. Hussin, C. T. H.Chuin, S. Sabar, M. R. N. Fazita, O. F. A. Taiwo, T. M. Hassan and M. K. M. Haafiz, Microcrystalline cellulose: Isolation, characterization and bio-composites application—A review, International Journal of Biological Macromolecules, 93 (2016) 789-804 [Back]
  6. B. W. Ninham, K. Larsson and P. Lo Nostro,, Two sides of the coin. Part 1. Lipid and surfactant self-assembly revisited, Colloids and Surfaces B: Biointerfaces, 152 (2017) 326-338; B. W. Ninham, K. Larsson and P. Lo Nostro, Two sides of the coin. Part 2. Colloids and surface science meets real biointerfaces, Colloids and Surfaces B: Biointerfaces, (2017) Article in press, doi: 10.1016/j.colsurfb.2017.07.090. [Back, 2]
  7. V. Mazzini and V. S. J. Craig, What is the fundamental ion-specific series for anions and cations? Ion specificity in standard partial molar volumes of electrolytes and electrostriction in water and non-aqueous solvents, Chemical Science, (2017) Article in press, doi: 10.1039/C7SC02691A. [Back]
  8. A. Voet, Quantitative lyotrophy, Chemical Reviews, 20 (1937) 169-179. [Back]
  9. S. Roy, M. D. Baer, C. J. Mundy and G. K. Schenter, Marcus theory of ion-pairing, Journal of Chemical Theory and Computation, (2017) Article in press, doi: 10.1021/acs.jctc.7b00332. [Back]
  10. H. N. P. Dayarathne, Ju. Choi and A. Jang, Enhancement of cleaning-in-place (CIP) of a reverse osmosis desalination process with air micro-nano bubbles, Desalination 422 (2017) 1-4. [Back]
  11. P. D. Cani, Gut cell metabolism shapes the microbiome, Science, 357 (2017) 548-549; M. X. Byndloss, E. E. Olsan, F. Rivera-Chávez, C. R. Tiffany, S. A. Cevallos, K. Lokken, T. P. Torres, A. J. Byndloss, F. Faber, Y. Gao, Y. Litvak, C. A. Lopez, G. Xu, E. Napoli, C. Giulivi, R. M. Tsolis, A. Revzin, C. B. Lebrilla and A. J. Bäumler, Microbiota-activated PPAR-Υ signaling inhibits dysbiotic Enterobacteriaceae expansion, Science, 357 (2017) 570-575. [Back]
  12. B. W. Ninham, R. M. Pashley and P. Lo Nostro, Surface forces: Changing concepts and complexity with dissolved gas, bubbles, salt and heat, Current Opinion in Colloid & Interface Science, 27 (2017) 25-32. [Back]
  13. Q. Xiao, Y. Liu, Z. Guo, Z. Liu, D. Lohse and X. Zhang, Solvent exchange leading to nanobubble nucleation: A molecular dynamics study, Langmuir, 33 (2017) 8090-8096. [Back]
  14. L. Labrador-Páez, D. J. Jovanovic, M. I. Marqués, K. Smits, S. D. Dolic, F. Jaque, H. E. Stanley, M. D. Dramicánin, J. García-Solé, P. Haro-González and D.Jaque, Unveiling molecular changes in water by small luminescent nanoparticles, Advanced Science News, 13 (2017) 1700968. [Back]
  15. R. H. Tunuguntla, R. Y. Henley, Y.-C. Yao, T. A. Pham, M. Wanunu and A. Noy, Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins, Science, 357 (2017) 792-796; Z. Siwy and F. Fornasiero, Improving on aquaporins, Science, 357 (2017) 753. [Back]
  16. C. Macias-Romero, I. Nahalka, H. I. Okur and S. Roke, Optical imaging of surface chemistry and dynamics in confinement, Science, 357 (2017) 784-788; J. Hunger and S. H. Parekh, A water window on surface chemistry, Science, 357 (2017) 755-756. [Back]
  17. B. Lindman, B. Medronho, L. Alves, C. Costa, H. Edlund and M. Norgren, The relevance of structural features of cellulose and its interactions to dissolution, regeneration, gelation and plasticization phenomena, Physical Chemistry Chemical Physics, (2017) Article in press, doi:10.1039/C7CP02409F. [Back]
  18. Q. Hu, H. Zhao and S. Ouyang, Understanding water structure from Raman spectra of isotopic substitution H2O/ D2O up to 573 K, Physical Chemistry Chemical Physics, 19 (2017) 21540-21547. [Back]
  19. M. J. Shultz, A. Brumberg, P. J. Bisson and R. Shultz, Producing desired ice faces, Proceedings of the National Academy of Sciences, 112 (2015)  E6096–E6100. [Back]
  20. J. Toro-Mendoza, G. Rodriguez-Lopez and O. Paredes-Altuve, Brownian diffusion of a particle at an air/liquid interface: elastic (not viscous) response of the surface’’, Physical Chemistry Chemical Physics, 19 (2017) 9092-9095; ; G. Boniello, A. Stocco, C. Blanc and M. Nobili, Comment on ‘‘Brownian diffusion of a particle at an air/liquid interface: elastic (not viscous) response of the surface’’, Physical Chemistry Chemical Physics, 19 (2017) 22592-22593; Toro-Mendoza, G. Rodriguez-Lopez and O. Paredes-Altuve, Reply to comment on ‘‘Brownian diffusion of a particle at an air/liquid interface: elastic (not viscous) response of the surface’’, Physical Chemistry Chemical Physics, 19 (2017) 22594-22595. [Back]
  21. H. Wennerström, Electrostatic interactions in concentrated colloidal dispersions, Physical Chemistry Chemical Physics, (2017) Article in press, doi: 10.1039/C7CP02594G. [Back]
  22. F. Jin, M. Wei, C. Liu and Y. Ma, The mechanism for the formation of OH radicals in condensed-phase water under ultraviolet irradiation, Physical Chemistry Chemical Physics, 19 (2017) 21453-21460. [Back]
  23. T. M. Gasser, A. Thoeny, L. Plaga, K. W. Köster, M. Etter, R. Böhmer and T. Loerting, Experimental evidence for a second hydrogen ordered phase of ice VI, arXiv:1708.06601 [cond-mat.mtrl-sci]. [Back]
  24. K. C. Armour, J. Marshall, J. R. Scott, A. Donohoe and E. R. Newsom, Southern Ocean warming delayed by circumpolar upwelling and equatorward transport, Nature Geoscience, 9 (2016) 549-554. [Back]
  25. E. Perlt, M. von Domaros, B. Kirchner, R. Ludwig and F. Weinhold, Predicting the ionic product of water, Nature Scientific Reports, 7 (2017) 10244. [Back] [Back to Top to top of page]
  26. K. Nieszporek and J. Nieszporek, Multi-centred hydrogen bonds between water and perchlorate anion, Physics and Chemistry of Liquids, 55 (2017) 473-481. [Back
  27. M. Gubitosi, P. Nosrati, M. K. Hamid, S. Kuczera, M. A. Behrens, E. G. Johansson and U. Olsson, Stable, metastable and unstable cellulose solutions, Royal Society Open Science, 4 (2017) 170487. [Back
  28. Y. Xing, X. Gui and Y. Cao, The hydrophobic force for bubble–particle attachment in flotation – a brief review, Physical Chemistry Chemical Physics, (2017) Article in press, doi: 10.1039/c7cp03856a. [Back
  29. T. Yagasaki, M. Matsumoto and H. Tanaka, Anomalous thermodynamic properties of ice XVI and metastable hydrates, Physical Review B, 93 (2016) 054118. [Back
  30. G. Trefalt, T. Palberg and M. Borkovec, Forces between colloidal particles in aqueous solutions containing
    monovalent and multivalent ions, Current Opinion in Colloid & Interface Science, 27 (2017) 9-17. [Back
  31. P. R. Bhushette and U. S. Annapure, Comparative study of Acacia nilotica exudate gum and acacia gum, International Journal of Biological Macromolecules. 102 (2017) 266-271. [Back
  32. A. J. Amaya, H. Pathak, V. P. Modak, H. Laksmono, N. D. Loh, J. A. Sellberg, R. G. Sierra, T. A. McQueen, M. J. Hayes, G. J. Williams, M. Messerschmidt, S. Boutet, M. J. Bogan, A. Nilsson, C. A. Stan and B. E. Wyslouzil, How cubic can ice be? Journal of Physical Chemistry Letters, 8 (2017) 3216-3222. [Back, 2]
  33. F. Li, Z. Men, S. Li, S. Wang, Z. Li and C. Sun, Study of hydrogen bonding in ethanol-water binary solutions by
    Raman spectroscopy, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 189 (2018) 621-624. [Back]
  34. A. H. Harvey and E. W. Lemmon, Correlation for the second virial coefficient of water, Journal of Physical Chemistry Reference Data, 33 (2004) 369-374. [Back]
  35. J. Tennyson, P. F. Bernath, L. R. Brown, A. Campargue, A. G. Császár, L. Daumont, R. R. Gamache, J. T. Hodges, O. V. Naumenko, O. L. Polyansky, L. S. Rothman, A. C. Vandaele and N. F. Zobov, IUPAC Technical report, A database of water transitions from experiment and theory, Pure and Applied Chemistry, 86 (2014) 71-83. [Back]
  36. R. Hellmann and E. Bich, Transport properties of dilute D2O vapour from first principles, Molecular Physics, 115 (2017) 1057-1064. [Back]
  37. L. A. Bulavin, S. V. Khrapatiy, V. N. Makhlaichuk, Calculation of the dimer equilibrium constant of heavy water saturated vapor, Ukrainian Journal of Physics, 60 (2015) 263-267; arXiv:1503.04027v1 [cond-mat.soft] 13 Mar 2015, [Back]
  38. G. S. Kell, G. E. McLaurin and E. Whalley, PVT Properties of water VII. Vapour densities of light and heavy water from 150 to 500 °C, Proceedings of the Royal Society, London A 425 (1989) 49-71. [Back]
  39. T. Matsui, M.Hirata, T. Yagasaki, M. Matsumoto and H. Tanaka, Communication: Hypothetical ultralow-density ice polymorphs, Journal of Chemical Physics, 147 (2017) 09110. [Back]
  40. Y. Lee, D. Thirumalai and C. Hyeon, Ultrasensitivity of water exchange kinetics to the size of metal ion, Journal of the American Chemical Society, (2017) Article in press, doi: 10.1021/jacs.7b04198. [Back]
  41. L. H. N. Cooper, Oxidation-reduction potential in sea water, Journal of the Marine Biological Association of the United Kingdom, 22 (1937) 167-176. [Back]
  42. N. J. Cira, A. Benusiglio and M. Prakash, Vapour-mediated sensing and motility in two-component droplets, Nature, 519 (2015) 446-450. [Back]
  43. R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel and T. A. Witten, Capillary flow as the cause of ring stains from dried liquid drops, Nature, 389 (1997) 827-829. [Back]
  44. Z. Cao, J. M. Hutchison, C. R. Sanders and J. U. Bowie, Backbone hydrogen bond strengths can vary widely in
    transmembrane helices, Journal of the American Chemical Society, 139 (2017) 10742-10749. [Back]
  45. N. A. Peppas, B. V. Slaughter and M. A. Kanzelberger, Hydrogels, in Polymer Science: A Comprehensive Reference, Volume 9, Ed. K. Matyjaszewski and M. Möller, Elsevier (2012) pp 385-395, doi:10.1016/B978-0-444-53349-4.00226-0. [Back]
  46. K. G. Libbrecht, Physical dynamics of ice crystal growth, Annual Review of Materials Research, 47 (2017) 7.1-7.25; K. G. Libbrecht, Toward a comprehensive model of snow crystal growth dynamics: 1. Overarching features and physical origins, (2012) arXiv:1211.5555 [cond-mat.mtrl-sci]; K. G. Libbrecht, 2013. Toward a comprehensive model of snow crystal growth dynamics: 2. Structure dependent attachment kinetics near −5 C. (2012) arXiv:1302.1231 [cond-mat.mtrl-sci]. [Back]
  47. H. O’Neill, S. V. Pingali, L. Petridis, J. He, E. Mamontov, L. Hong, V. Urban, B. Evans, P. Langan, J. C. Smith
    and B. H. Davison, Dynamics of water bound to crystalline cellulose, Scientific Reports, 7 (2017) 11840. [Back]
  48. M. Schauperl, M. Podewitz, T. S. Ortner, F. Waibl, A. Thoeny, T. Loerting and K. R. Liedl, Balance between hydration enthalpy and entropy is important for ice binding surfaces in Antifreeze Proteins, Scientific Reports, 7 (2017) 11901. [Back]
  49. O. Carugo, When proteins are completely hydrated in crystals, International Journal of Biological Macromolecules, 89 (2016) 137-143. [Back]
  50. T. Hatakeyama and H. Hatakeyama, Heat capacity and nuclear magnetic relaxation times of non-freezing water restrained by polysaccharides, revisited, Journal of Biomaterials Science, Polymer Edition, (2017) Article in press, doi: 10.1080/09205063.2017.1291551. [Back] [Back to Top to top of page]
  51. P. A. Janmey and F. C. MacKintosh, Polymers of the Cytoskeleton, in Polymer Science: A Comprehensive Reference, Volume 9, Ed. K. Matyjaszewski and M. Möller, Elsevier (2012) pp 183-200, doi:10.1016/B978-0-444-53349-4.00249-1. [Back
  52. E. D. Zanotto and J. C. Mauro, The glassy state of matter: Its definition and ultimate fate, Journal of Non-Crystalline Solids, 471 (2017) 490-495. [Back
  53. Y. Koga, K. Miki and K. Nishikawa, Effects of H+ and OH- on H2O as probed by the 1-propanol probing
    methodology: Differentialy thermodynamic approach, Physical Chemistry Chemical Physics, (2017) Article in press, doi: 10.1039/C7CP05519F. [Back
  54. (a) K. Zhao and H. Wu, The fountain effect of ice-like water across nanotubes at room temperature, Physical Chemistry Chemical Physics, (2017) Article in press, doi: 10.1039/c7cp04693f; (b) A. R. Cooper and P. K. Gufta, An operational definition of the glassy state, Journal of The American Ceramic Society-Discussions and Notes, 58 (1975) 350 -351. [Back
  55. M. Van Wassenhoven, M. Goyens, M. Henry, E. Capieaux and P. Devos, Nuclear Magnetic Resonance characterization of traditional homeopathically-manufactured copper (Cuprum metallicum) and a plant (Gelsemium sempervirens) medicines and controls, Homeopathy, (2017) Article in press, doi: 10.1016/j.homp.2017.08.001. [Back, 2]
  56. A. H. Smith and A. W. Lawson, The velocity of sound in water as a function of temperature and pressure, Journal of Chemical Physics, 22 (1954) 351-359. [Back
  57. V. I. Chizhik, A. V. Egorov, M. S. Pavlova, M. I. Egorova and A. V. Donets, Structure of hydration shell of calcium cation by NMR relaxation, Car-Parrinello molecular dynamics and quantum-chemical calculations, Journal of Molecular Liquids, 224 (2016) 730-736. [Back
  58. E. Decaneto, T. Vasilevskaya, Y. Kutin, H. Ogata, M. Grossman, I. Sagi, M. Havenith, W. Lubitz, W. Thiel and N. Cox ,Solvent water interactions within the active site of the membrane type I matrix metalloproteinase, Physical Chemistry Chemical Physics, (2017) Article in press, doi: 10.1039/c7cp05572b. [Back
  59. (a) H. Hirai, K. Komatsu, M. Honda and T. Kawamura, Phase changes of CO2 hydrate under high pressure and low temperature, Journal of Chemical Physics, 133 (2010) 124511; (b) B. Massani, C. Mitterdorfer and T. Loerting, Formation and decomposition of CO2-filled ice, Journal of Chemical Physics, 147 (2017) 134503; (c) D. M. Amos, M.-E. Donnelly, P. Teeratchanan, C. L. Bull, A. Falenty, W. F. Kuhs, A. Hermann, and J. S. Loveday, A chiral gas-hydrate structure common to the carbon dioxide-water and hydrogen-water systems, Journal of Physical Chemistry Letters, 8 (2017) 4295-4299. [Back, 2]
  60. P. K. Nandi, C. J. Burnham, Z. Futera and N. J. English, Ice-amorphization of supercooled water nanodroplets in no man’s land, ACS Earth and Space Chemistry, (2017) Article in press, doi: 10.1021/acsearthspacechem.7b00011. [Back
  61. (a) R. J. Millar, J. S. Fuglestvedt, P. Friedlingstein, J. Rogelj, M. J. Grubb, H. D. Matthews, R. B. Skeie, P. M. Forster, D. J. Frame and M. R. Allen, Emission budgets and pathways consistent with limiting warming to 1.5 °C, Nature Geoscience, 7 (2017) Article in press, doi: 10.1038/NGEO3031; (b) T. R. Karl, A. Arguez, B. Huang, J. H. Lawrimore, J. R. McMahon, M. J. Menne, T. C. Peterson, R. S. Vose and H.-M. Zhang, Possible artifacts of data biases in the recent global surface warming hiatus, Science, 348 (2015) 1469-1472; (c) J. M. Melillo, S. D. Frey, K. M. DeAngelis, W. J. Werner, M. J. Bernard, F. P. Bowles, G. Pold, M. A. Knorr, A. S. Grandy, Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world, Science, 358 (2017) 101-105; (d) M. E., Mann, Z., Zhang, M. K. Hughes, R. S. Bradley, S. K Miller, S. Rutherford and F. Ni,. Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proceedings of the National Academy of Sciences, 105 (2008) 13252-13257; (e) E.-S. Chung, B. Soden, B. J. Sohn and L.Shi, Upper-tropospheric moistening in response to anthropogenic warming, Proceedings of the National Academy of Sciences, 111 (2014) 11636-11641; (f) A. Eldering, P. O. Wennberg, D. Crisp, D. S. Schimel, M. R. Gunson, A. Chatterjee, J. Liu, F. M. Schwandner, Y. Sun, C. W. O’Dell, C. Frankenberg, T. Taylor, B. Fisher, G. B. Osterman, D. Wunch, J. Hakkarainen, J. Tamminen and B. Weir, The Orbiting Carbon Observatory-2 early science investigations of regional carbon dioxide fluxes, Science , 358 (2017) eaam5745. [Back
  62. B. K. D. Pearce, R. E. Pudritz, D. A. Semenov and T. K. Henning, Origin of the RNA world: The fate of nucleobases in warm little ponds, Proceedings of the National Academy of Sciences, (2017) Article in press, doi:10.1073/pnas.1710339114. [Back
  63. R. J. Buszek, J. S. Francisco and J. M. Anglada, Water effects on atmospheric reactions, International Reviews in Physical Chemistry, 30 (2011) 335-369. [Back
  64. M. Chen, H.-Y. Ko, R. C. Remsing, M. F. C. Andrade, B. Santra, Z. Sun, A. Selloni, R. Car, M. L. Klein, J. P. Perdew and X. Wu, Ab initio theory and modeling of water, Proceedings of the National Academy of Sciences, 114 (2017) 10846-10851; arXiv:1709.10493v1 [cond-mat.soft] 29 Sep 2017. [Back
  65. H. V .Lankford and L. R.Fox, Melting ice and boiling water in the mountains, Wilderness & Environmental Medicine, (2017) Article in press, doi: 10.1016/j.wem.2017.08.003. [Back]
  66. J. A. Riback, M. A. Bowman, A. M. Zmyslowski, C. R. Knoverek, J. M. Jumper, J. R. Hinshaw, E. B. Kaye, K. F. Freed, P. L. Clark and T. R. Sosnick, Innovative scattering analysis shows that hydrophobic disordered proteins are expanded in water, Science, 358 (2017) 238-241. [Back]
  67. Elga, Pure Labwater Guide, (2008) ELGA LabWater/VWS (UK) Ltd. www.elgalabwater.com. [Back]
  68. H. Yuan, S. Hu, J. Tong, L. Zhao, S. Lin and S. Gao, Preparation of ultra-pure water and acids and investigation of background of an ICP-MS laboratory, Talanta, 52 (2000) 971-981. [Back]
  69. F. Lehmkühler, Y. Forov, M. Elbers, I. Steinke, C. J. Sahle, C. Weis, N. Tsuji, M. Itou, Y. Sakurai, A. Poulaind and C. Sternemann, Temperature dependence of the hydrogen bond network in trimethylamine N-oxide and guanidine hydrochloride–water solutions, Physical Chemistry Chemical Physics, (2017) Article in press, doi:10.1039/c7cp04958g. [Back]
  70. M. T. Ruggiero, J. Sibik, A. Erba, J. A. Zeitler and T. M. Korter, Quantification of cation–anion interactions in crystalline monopotassium and monosodium glutamate salts† M. T. Ruggiero, J. Sibik, A. Erba, J. A. Zeitler and T. M. Korter, Physical Chemistry Chemical Physics, (2017) Article in press, doi:10.1039/c7cp05544g. [Back]
  71. O. Gereben and L. Pusztai, Hydrogen bond connectivities in water–ethanol mixtures: On the influence of the H-bond definition, Journal of Molecular Liquids, 220 (2016) 836-841. [Back]
  72. G. Kabbe, C. Dreßler and D. Sebastiani, Proton mobility in aqueous systems: combining ab initio accuracy with millisecond timescales, Physical Chemistry Chemical Physics, (2017) Article in press, doi: 10.1039/c7cp05632j. [Back]
  73. R. F.Rekker The hydrodrophobic fragmental constant: its derivation and application with a means of characterizing membrane systems ( Elsevier, Amsterdam, 1977); R. F.Rekker and H. M.de Kort, The hydrophobic fragmental constant; an extension to a 1000 data point set. European Journal of Medicinal Chemistry, 14 (1979) 479-488; R. F. Rekker, A. M. ter Laak and R. Mannhold, On the reliability of calculated Log P-values: Rekker, HanschLeo and Suzuki approach, R. F. Rekker, A. M. ter Laak and R. Mannhold, Quantitative Structure-Activity Relationships, 12 (1993) 152-157. [Back]
  74. M. A. Walker, Improvement in aqueous solubility achieved via small molecular changes, Bioorganic & Medicinal Chemistry Letters, (2017) Article in press, doi: 10.1016/j.bmcl.2017.09.041 [Back]
  75. S. J. Hawkes, Salts are mostly not ionized, Journal of Chemical Education, 73 (1996) 421-423. [Back, 2]  [Back to Top to top of page]
  76. R. W. Clark and J. M. Bonicamp, The Ksp–solubility conundrum, Journal of Chemical Education, 7 (1998) 1182-1185. [Back]
  77. Y. Ran, Y. He, G. Yang, J. L. H. Johnson and S. H. Yalkowsky, Estimation of aqueous solubility of organic compounds by using the general solubility equation, Chemosphere, 48 (2002) 487-509. [Back]
  78. N. Jain and S. H. Yalkowsky, Estimation of the aqueous solubility I: Application to organic non-electrolytes, Journal of Pharmeutical Sciences, 90 (2000) 234-252. [Back]
  79. N. Jain, G.Yang, S. G. Machatha and S. H. Yalkowsky, Estimation of the aqueous solubility of weak electrolytes, International Journal of Pharmaceutics, 319 (2006) 169-171. [Back]
  80. A. M. Hyde, S. L. Zultanski, J. H. Waldman, Y.-L. Zhong, M. Shevlin and F. Peng, General principles and strategies for salting-out informed by the Hofmeister Series, Organic Process Research & Development, 21 (2017) 1355-1370. [Back]
  81. K. A. Perrine,1, K. M. Parry,1, A. C. Stern, M. H. C. Van Spyk, M. J. Makowski, J. A. Freites, B. Winter, D. J. Tobias and J. C. Hemminger, Specific cation effects at aqueous solution−vapor interfaces: Surfactant-like behavior of Li+ revealed by experiments and simulations, Proceedings of the National Academy of Sciences, (2017) Article in press, doi: 10.1073/pnas.1707540114. [Back]
  82. V. Tripkovic, Thermodynamic assessment of the oxygen reduction activity in aqueous solutions, Physical Chemistry Chemical Physics, (2017) Article in press, doi: 10.1039/c7cp05448c. [Back]
  83. R .Kusaka, T. Ishiyama, S. Nihonyanagi, A. Morita and T. Tahara, Structure at the air/water interface in the presence of phenol: a study using heterodyne-detected vibrational sum frequency generation and molecular dynamics simulation, Physical Chemistry Chemical Physics, (2017) Article in press, doi: 10.1039/c7cp05150f. [Back]
  84. A. A. Hyman, C. A.Weber and F. Jülicher, Liquid-liquid phase separation in Biology, Annual Review of Cell and Developmental Biology, 30 (2014) 39-58. [Back]
  85. J. L. Thomaston, R. A. Woldeyes, T.Nakane, A. Yamashita, T. Tanaka, K. Koiwai, A. S. Brewster, B. A. Barad, Y. Chen, T. Lemmin, M. Uervirojnangkoorn, T. Arima, J. Kobayashi, T. Masudad, M. Suzuki, M. Sugahara, N. K. Sauter, R. Tanaka, O. Nureki, K. Tono, Y. Joti, E. Nango, S. Iwata, F. Yumoto, J. S. Fraser and W. F. DeGrado, XFEL structures of the influenza M2 proton channel: Room temperature water networks and insights into proton conduction, Proceedings of the National Academy of Sciences, (2017) Article in press, doi: 10.1073/pnas.1705624114. [Back]
  86. A. Kumar, P. P. Pathak and N. Dass, A study of speed of sound in water, IOSR Journal of Applied Physics, 8 (2016) 21-23. [Back]
  87. M. Pozar and A. Perera, Evolution of the microstructure of aqueous alcohol mixtures with cooling: a computer simulation study, Journal of Molecular Liquids, (2017) Article in press, doi: 10.1016/j.molliq.2017.10.039. [Back]
  88. K. Rong, T. C. Zhang and T. Li, Forward osmosis: Definition and evaluation of FO water transmission coefficient, Journal of Water Process Engineering, 20 (2017) 106-112. [Back]
  89. J. Wang and A V. Nguyen, Historical perspective A review on data and predictions of water dielectric spectra for
    calculations of van der Waals surface forces, Advances in Colloid and Interface Science, (2017) Article in press, doi.: 10.1016/j.cis.2017.10.004. [Back]
  90. A. K. Sieradzan, A. G. Lipska and E. A. Lubecka,, Shielding effect in protein folding, Journal of Molecular Graphics and Modelling, (2017) Article in press, doi.: 10.1016/j.jmgm.2017.10.018. [Back]
  91. L. Zhang, D.-W. Sun and Z. Zhang, Methods for measuring water activity (aw) of foods and its applications to moisture sorption isotherm studies, Critical Reviews in Food Science and Nutrition, 57 (2015) 1052-1058. [Back]
  92. L. N. Bell and T. P. Labuza, Practical aspects of moisture sorption isotherm measurement and use. 2nd Ed. (2000).AACC Egan Press, Egan, MN. [Back]
  93. K. Suntaro, S. Tirawanichakul and Y. Tirawanichakul, Determination of isosteric heat and entropy of sorption of air dried sheet rubber using artificial neural network approach, Applied Mechanics and Materials, 541-542 (2014) 374-379. [Back]
  94. F. Kaymak-Ertekin and A.Gedik, Sorption isotherms and isosteric heat of sorption for grapes, apricots, apples and potatoes, Lebensmittel-Wissenschaft und Technologie, 37 (2004) 429-438. [Back]
  95. A. Novak, Hydrogen bonding in solids. Correlation of spectroscopic and crystallographic data, Structure and Bonding, 18 (1974) 177-216. [Back]
  96. Yu. A. Galkina, N. A. Kryuchkova, M. A. Vershinin and B. A. Kolesov, Features of strong O–H⋯O and N–H⋯O hydrogen bond manisfestation in vibrational spectra, Journal of Structural Chemistry, 58 (2017) 911-918. [Back]
  97. A. L. Mitchell, G. A. Gaetani, J. A. O’Leary and E. H. Hauri, H2O solubility in basalt at upper mantle conditions, Contributions to Mineralogy and Petrology, 172 (2017) 85. [Back]
  98. A. D. French, Glucose, not cellobiose, is the repeating unit of cellulose and why that is important, Cellulose, (2017) Article in press, doi: 10.1007/s10570-017-1450-3. [Back]
  99. S. Sukenik, S. Dunsky, A. Barnoy, I. Shumilin and D. Harries, TMAO mediates effective attraction between lipid membranes by partitioning unevenly between bulk and lipid domains, Physical Chemistry Chemical Physics, (2017) Article in press, doi: 10.1039/c7cp04603k. [Back]
  100. Y. Otsuki, T. Sugimoto, T. Ishiyama, A. Morita, K. Watanabe and Y. Matsumoto, Unveiling subsurface hydrogen-bond structure of hexagonal water ice, Physical Review B, 6 (2017) 115405. [Back]

 

 

Home | Site Index | Site Map | Search | LSBU | Top

 

This page was established in 2017 and last updated by Martin Chaplin on 10 November, 2017


Creative Commons License
This work is licensed under a Creative Commons Attribution
-Noncommercial-No Derivative Works 2.0 UK: England & Wales License

 

The preferred Web Browser is Mozilla Firefox