Water site headerMasthead Island, Great Barrier Reef Print-me keygo to Water Visitor Book contributions
 Go to my page Water Structure and Science

Water Structure and Science, References 3101- 3200


  1. H. J. Bixler, The carrageenan controversy, Journal of Applied Phycology, 29 (2017) 2201-2207; J. K. Tobacman, Reply to comments regarding "The Carrageenan Controversy", Journal of Applied Phycology, 29 (2017) 2209-2211; S. David, C. S. Levi, L. Fahoum, Y. Ungar, E. G. Meyron-Holtz, A. Shpigelman and U. Lesmes, Revisiting the carrageenan controversy: do we really understand the digestive fate and safety of carrageenan in our foods? Food & Function, 9 (2018) 1344-1352; M. L. Weiner and J. M. McKim Jr, Comment on “Revisiting the carrageenan controversy: do we really understand the digestive fate and safety of carrageenan in our foods?” by S. David, C. S. Levi, L. Fahoum, Y. Ungar, E. G. Meyron-Holtz, A. Shpigelman and U. Lesmes, Food Funct., 2018, 9, 1344–1352, Food & Function, 10 (2019) 1760-1762; S. David, L. Fahoum, G. Rozen, R. Shaoul, A. Shpigelman, E. G. Meyron-Holtz and U. Lesmes, , Reply to the Comment on “Revisiting the carrageenan controversy: do we really understand the digestive fate and safety of carrageenan in our foods?” by M. Weiner and J. McKim, Food Funct., 2019, 10: DOI: 10.1039/C8FO01282B, Food & Function, 10 (2019) 1763-1766. [Back]
  2. K. Tomanová, M. Precek, V. Múcka, L. Vysıín, L. Juhab and V. Cuba, At the crossroad of photochemistry and radiation chemistry: formation of hydroxyl radicals in diluted aqueous solutions exposed to ultraviolet radiation, Physical Chemistry Chemical Physics, 19 (2017) 29402-29408. [Back, 2]
  3. L. Liang, J.-C. Li, L.Zhang, Z. Zhang, J.-W.Shen, L. Li and J. Wu, Computer simulation of water desalination through boron nitride nanotubes, Physical Chemistry Chemical Physics, 19 (2017) 30031-30038. [Back]
  4. Y. N. Kalugina, A. Faure, A. van der Avoird, K. Walker and F. Lique, Interaction of H2O with CO: potential energy surface, bound states and scattering calculations, Physical Chemistry Chemical Physics, 20 (2018) 5469-5477. [Back]
  5. F. Fillaux, The quantum phase-transitions of water, EPL (Europhysics Letters), 119 (2017) 40008. [Back]
  6. A. Wirgin, On the velocity of sound in water: theoretical aspects of Colladon’s nineteenth century experiments, arXiv:1710.03777v1 [physics.hist-ph] 10 Oct 2017. [Back]
  7. J. Kolafa, Residual entropy of ices and clathrates from Monte Carlo simulation, The Journal of Chemical Physics, 140 (2014) 204507. [Back]
  8. D. E. Garrick, J. W. Hall, A. Dobson, R. Damania, R. Q. Grafton, R. Hope, C. Hepburn, R. Bark, F. Boltz, L. De Stefano, E. O'Donnell, N. Matthews and A. Money, Valuing water for sustainable development, Science, 358 (2017) 1003-1005. [Back]
  9. C. Corsaro, F. Mallamace, S. Vasi, S.-H. Chen, H. E. Stanley and D. Mallamace, Contrasting microscopic interactions determine the properties of water/methanol solutions, Frontiers of Physics, 13 (2018) 138201. [Back]
  10. M. De Marzio, G. Camisasca, M. Rovere and P. Gallo, Fragile to strong crossover and Widom line in supercooled water: A comparative study, Frontiers of Physics, 13 (2018) 136103. [Back]
  11. P. H. Handle, T. Loerting and F. Sciortino, Supercooled and glassy water: Metastable liquid(s), amorphous solid(s), and a no-man’s land, Proceedings of the National Academy of Sciences, 114 (2017) 13336-13344. [Back, 2]
  12. A. Lasanta, F. V. Reyes, A. Prados and A. Santos, When the hotter cools more quickly: Mpemba effect in granular fluids, Physical Review Letters, 119 (2016) 148001; arXiv:1611.04948v1 [cond-mat.soft] 15 Nov 2016; K. Krämer, Past might explain Mpemba effect, Chemistry World, 14 (2017) 43; Z. Lu and O. Raz, Anomalous cooling and heating: the Mpemba effect and its inverse, Proceedings of the National Academy of Sciences, 114 (2017) 5083-5088; arXiv:1609.05271v1 [cond-mat.stat-mech] 17 Sep 2016. [Back, 2]
  13. P A. Greaney, G. Lani, G. Cicero and J. C Grossman. Mpemba like behavior in carbon nanotube resonators, Metallurgical and Materials Transactions A, 42 (2011) 3907-3912. [Back]
  14. L. Liu, S. Tan, T. Horikawa, D. D. Do, D. Nicholson and J. Liu, Water adsorption on carbon - A review, Advances in Colloid and Interface Science, 250 (2017) 64-78. [Back]
  15. Y. Litman, D. Donadio, M. Ceriotti, and M. Rossi, Decisive role of nuclear quantum effects on surface mediated water dissociation at finite temperature, The Journal of Chemical Physics, 148, 102320 (2018); arXiv:1710.04876v1 [physics.chem-ph] 13 Oct 2017. [Back]
  16. S. Mondal, T. Goswami, G. Jana, A. Misra and P. K. Chattaraj, A possible reason behind the initial formation of pentagonal dodecahedron cavities in sI-methane hydrate nucleation: A DFT study, Chemical Physics Letters, 691 (2018) 415-420. [Back]
  17. P. A. Magallanes-Cruz, P. C. Flores-Silva and L. A. Bello-Perez, Starch structure influencesits digestibility: A review, Journal of Food Science, 82 (2017) 2016-2023. [Back]
  18. I. U. Vakarelski, E. Klaseboer, A. Jetly, M. M. Mansoor, A. A. Aguirre-Pablo, D. Y. C. Chan and S. T. Thoroddsen, Self determined shapes and velocities of giant near-zero drag gas cavities, Science Advances, 3 (2017) e1701558. [Back]
  19. H. A. Hushvaktov, F. H. Tukhvatullin, A. Jumabaev, U. N. Tashkenbaev, A. A. Absanov, B. G. Hudoyberdiev and B. Kuyliev, Raman spectra and ab initio calculation of a structure of aqueous solutions of methanol, Journal of Molecular Structure, 1131 (2017) 25-29. [Back]
  20. T. Encrenaz, Water in the Solar System, The Annual Review of Astronomy and Astrophysics, 46 (2008) 57-87; J. F. Bell III, Water on Planets, Highlights of Astronomy, 15 XXVIIth IAU General Assembly, August 2009, ed. I. F. Corbett, ed. International Astronomical Union 2010, doi:10.1017/S1743921310008161. [Back]
  21. H. Tran, A. V. Cunha, J. J. Shephard, A. Shalit, P. Hamm, T. L. C. Jansen and C. G. Salzmann, 2D IR spectroscopy of high-pressure phases of ice, The Journal of Chemical Physics, 147 (2017) 144501. [Back, 2, 3, 4]
  22. T. Morawietz, O. Marsalek, S. R. Pattenaude, L. M. Streacker, D. Ben-Amotz and T. E. Markland, The interplay of structure and dynamics in the Raman spectrum of liquid water over the full frequency and temperature range, arXiv:1711.08563v1 [physics.chem-ph] 23 Nov 2017. [Back]
  23. C. Marcolli, Ice nucleation triggered by negative pressure, Scientific Reports, 7 (2017) 16634. [Back, 2]
  24. K. Fleming, P. Johnston, D. Zwartz, Y. Yokoyama, K. Lambeck and J. Chappell, Refining the eustatic sea-level curve since the Last Glacial Maximum using far- and intermediate-field sites, Earth and Planetary Science Letters, 163 (1998) 327-342. [Back]
  25. D. Niether, S. Di Lecce, F. Bresme and S. Wiegand, Unravelling the hydrophobicity of urea in water using thermodiffusion: implications for protein denaturation, Physical Chemistry Chemical Physics, 20 (2018) 1012-1020. [Back]  [Back to Top to top of page]
  26. J. D. Shakun, P. U. Clark, F. He, S. A. Marcott, A. C. Mix, Z. Liu, B. Otto-Bliesner, A. Schmittner and E. Bard, Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation Nature, 484 (2012) 49-55. [Back]
  27. R. Case, H. Schollmeyer, P. Kohl, E. B. Sirota, R. Pynn, K. E. Ewert, C. R. Safiny and Y Li, Hydration forces between aligned DNA helices undergoing B to A conformational change: In-situ X-ray fiber diffraction studies in a humidity and temperature controlled environment, Journal of Structural Biology, 200 (2017) 283-292. [Back]
  28. A. Gupta, H. B. Eral, T. A. Hatton and P. S. Doyle, Nanoemulsions: formation, properties and applications, Soft Matter, 12 (2016) 2826-2841. [Back]
  29. (a) J. K. Hensel, A. P. Carpenter, R. K. Ciszewski, B. K. Schabes, C. T. Kittredge, F. G. Moore and G. L. Richmond, Molecular characterization of water and surfactant AOT at nanoemulsion surfaces, Proceedings of the National Academy of Sciences, 114 (2017) 13351-1335; (b) J. Penfold, S. Nave and J. Eastoe, What Is So Special about Aerosol-OT? 1. Aqueous Systems, Langmuir, 16 (2000) 8733-8740. [Back]
  30. E. Xi, V. Venkateshwaran, L. Li, N. Rego, A. J. Patel and S. Garde, Hydrophobicity of proteins and nanostructured solutes is governed by topographical and chemical context, Proceedings of the National Academy of Sciences, 114 (2017) 13345-13350. [Back]
  31. A. Mitchinson, Physical chemistry: Ice niceties Nature, 551 (2017) 178; L. Lupi, A. Hudait, B. Peters, M. Grünwald, R. G. Mullen, A. H. Nguyen and V. Molinero, Role of stacking disorder in ice nucleation, Nature, 551 (2017) 218-222; F. Paesani, Making Ice from stacking-disordered crystallites, Chem, 3 (2017) 917-927, doi.: 10.1016/j.chempr.2017.12.002. [Back]
  32. D. Kwon, Life on Mars, The Scientist, Dec. (2017) 36-43. [Back]
  33. S. K. Reddy, S. C. Straight, P. Bajaj, C. H. Pham, M. Riera, D. R. Moberg, M. A. Morales, C. Knight, A. W. Gotz, and F. Paesani, On the accuracy of the MB-pol many-body potential for water: Interaction energies, vibrational frequencies, and classical thermodynamic and dynamical properties from clusters to liquid water and ice, The Journal of Chemical Physics, 145 (2016) 194504; arXiv:1609.02884v1 [physics.chem-ph] 9 Sep 2016. [Back]
  34. (a) K. H. Kim, A. Späh, H. Pathak, F. Perakis, D. Mariedahl, K. Amann-Winkel, J. A. Sellberg, J. H. Lee, S. Kim, J. Park, K. H. Nam, T. Katayama and A. Nilsson, Maxima in the thermodynamic response and correlation functions of deeply supercooled water, Science, 358 (2017) 1589-1593; (b) P. Gallo and H. E. Stanley, Supercooled water reveals its secrets, Science, 358 (2017) 1543-1544; (c) F. Caupin, V. Holten, C. Qiu, E. Guillerm, M. Wilke, M. Frenz, J. Teixeira and A. K. Soper, Comment on “Maxima in the thermodynamic response and correlation functions of deeply supercooled water”, Science, 360 (2018) eaat1634; (d) K. H. Kim, A. Späh, H. Pathak, F. Perakis, D. Mariedahl, K. Amann-Winkel, J. A. Sellberg, J. H. Lee, S. Kim, J. Park, K. H. Nam, T. Katayama and A. Nilsson, Response to Comment on “Maxima in the thermodynamic response and correlation functions of deeply supercooled water”, Science, 360 (2018) eaat1729; (e) K. Sanderson, H2Oh!, New Scientist. 238 (2018) 26-29; Cite as: J. Chem. Phys. 150, 234503 (2019); (f) A. K. Soper, Is water one liquid or two?, Journal of Chemical Physics, 150 (2019) 234503. [Back, 2, 3, 4, 5]
  35. C. Fang and R. Qiao, Surface hydration drives rapid water imbibition into strongly hydrophilic nanopores, Physical Chemistry Chemical Physics, 19 (2017) 20506-20512. [Back]
  36. F. Comert, F. Azarikia and P. L. Dubin, Polysaccharide zeta-potentials and protein-affinity, Physical Chemistry Chemical Physics, 19 (2017) 21090-21094. [Back]
  37. A. Stamma, A. Svendsen, J. Skjold-Jørgensen, T. Vissing, I. Berts and T. Nylander, The triolein/aqueous interface and lipase activity studied by spectroscopic ellipsometry and coarse grained simulations, Chemistry and Physics of Lipids, 211 (2018) 37-43. [Back]
  38. J. Guo, X.-Z. Li, J. Peng, E.-G. Wang and Y. Jiang, Atomic-scale investigation of nuclear quantum effects of surface water: Experiments and theory, Progress in Surface Science, 92 (2017) 203-239. [Back, 2]
  39. B. Stevens, H.Brogniez, C. Kiemle, J.-L. Lacour, C. Crevoisier and J. Kiliani, Structure and dynamical influence of water vapor in the lower tropical troposphere, Surveys in Geophysics, 38 (2017) 1371-1397. [Back]
  40. J. Stone, Natural bond orbitals and the nature of the hydrogen bond, Journal of Physical Chemistry A, 121 (2017) 1531-1534; A. Extance, Do hydrogen bonds have covalent character? Chemistry World, 14(4) (2017) 39; F. Weinhold and E. D Glendening, Comment on "Natural Bond Orbitals and the Nature of the Hydrogen Bond",Journal of Physical Chemistry A, 122 (2018) 724–732; A. J. Stone and K. Szalewicz, Reply to “Comment on ‘Natural Bond Orbitals and the Nature of the Hydrogen Bond’”, Journal of Physical Chemistry A, 122 (2018) 733-736. [Back]
  41. M. Wang, Z. Wang, X. Gong and Z. Guo, The intensification technologies to water electrolysis for hydrogen production – A review, Renewable and Sustainable Energy Reviews, 29 (2014) 573-588. [Back]
  42. J. Singh and J. B. Udgaonkar, Molecular mechanism of the misfolding and oligomerization of the Prion protein: Current understanding and its implications, Biochemistry, 54 (2015) 4431-4442; P. K. Baral, J. Yin, A. Aguzzi and M. N. G. James, Transition of the prion protein from a structured cellular form (PrP C ) to the infectious scrapie agent (PrP Sc ), Protein Science, 28 (2019) 2055-2063. [Back]
  43. Y. Koga, F. Sebe and K. Nishikawa, Effects of tetramethyl- and tetraethylammonium chloride on H2O: Calorimetric and near-infrared spectroscopic study, Journal of Physical Chemistry B, 117 (2013) 877-883; K. Yonenaga, T. Morita, K. Nishikawa and Y. Koga, Effects of ionic liquid constituent cations, tetraalkylammoniums, on water studied by means of the “1-propanol probing methodology”, Journal of Molecular Liquids, 252 (2018) 58-61. [Back]
  44. K. Sotthewes, P. Bampoulis, H. J. W. Zandvliet, D. Lohse and B. Poelsema, Pressure-induced melting of confined ice, ACS Nano, 11 (2017) 12723-12731. [Back]
  45. S. A. Skopinov, M. V. Bodrova, M. P. R. Jablon, G. H. Pollack and F. A. Blyakhman, ‘‘Exclusion Zone’’ formation in mixtures of ethanol and water, Journal of Solution Chemistry, 46 (2017) 626-632. [Back]
  46. D. Breitburg, L. A. Levin, A. Oschlies, M. Grégoire, F. P. Chavez, D. J. Conley, V. Garçon, D. Gilbert, D. Gutiérrez, K. Isensee, G. S. Jacinto, K. E. Limburg, I. Montes, S. W. A. Naqvi, G. C. Pitcher, N. N. Rabalais, M. R. Roman, K. A. Rose, B. A. Seibel, M. Telszewski, M. Yasuhara and J. Zhang, Declining oxygen in the global ocean and coastal waters, Science, 359 (2018) eaam7240. [Back]
  47. A. S. Tascini, M. G. Noro, R. Chen, J. M. Seddon and F. Bresme, Understanding the interactions between sebum
    triglycerides and water: a molecular dynamics simulation study, Physical Chemistry Chemical Physics, 20 (2018) 1848-1860 . [Back]
  48. Z. Xu, W. Zhao, Z. Wang, Y. Yangce and N. Sahai, Structure analysis of collagen fibril at atomic-level resolution and its implications for intra-fibrillar transport in bone biomineralization, Physical Chemistry Chemical Physics, 20 (2018) 1513-1523 . [Back]
  49. S. Strazdaite, J. Versluis, N. Ottosson and H. J. Bakker, Orientation of methylguanidinium ions at the water−air interface, Journal of Physical Chemistry C, 121 (2017) 23398-23405. [Back]
  50. M. Razmkhah, F. Moosavi, M. T. H. Mosavian and A.Ahmadpour, Does electric or magnetic field affect reverse osmosis desalination? Desalination, 432 (2018) 55-63. [Back] [Back to Top to top of page]
  51. E. G. Tarakanova and G. V. Yukhnevich, Composition and structure of hydrates of CH3COOH molecules and CH3CO2 anions in aqueous solutions, Journal of Structural Chemistry, 58 (2017) 1357-1367. [Back]
  52. B. Pamuk, P. B. Allen and M.-V. Fernández-Serra, Insights into the structure of liquid water from nuclear quantum effects on density and compressibility of ice polymorphs, arXiv:1801.02998v1 [cond-mat.mtrl-sci] 9 Jan 2018. [Back, 2]
  53. H. Dureckova, T. K. Woo, K. A. Udachin, J. A. Ripmeester and S. Alavi, The anomalous halogen bonding interactions between chlorine and bromine with water in clathrate hydrates, Faraday Discussions, 203 (2017) 61-77. [Back]
  54. D. Hayakawa, Y. Nishiyama, K. Mazeau and K. Ueda, Evaluation of hydrogen bond networks in cellulose Iβ and II crystals using density functional theory and CareParrinello molecular dynamics, Carbohydrate Research, 449 (2017) 103-113. [Back]
  55. K. Shiraga, A. Adachi and Y. Ogawa, Characterization of the hydrogen-bond network of water around sucrose and trehalose: H-O-H bending analysis, Chemical Physics Letters, 678 (2017) 59-64. [Back]
  56. C. Lécuyer, A. Royer, F. Fourel, M. Seris, L. Simon and F. Robert, D/H fractionation during the sublimation of water ice, Icarus, 285 (2017) 1-7; J. Mortimer, C., Lécuyer, F., Fourel and J. Carpenter, D/H fractionation
    during sublimation of water ice at low temperatures into a vacuum, Planetary and Space Science, 158 (2018) 25-33. [Back]
  57. I. Bakó, J. Oláh, A. Lábas, S. Bálint, L. Pusztai and M. C. Bellissent Funel, Water-formamide mixtures: Topology of the hydrogen-bonded network, Journal of Molecular Liquids, 228 (2017) 25-31. [Back]
  58. V. I. Solomatin, Structural mechanisms of ice deformation, Doklady Earth Sciences, 477 (2017) 1426-1429, doi: 10.1134/S1028334X17120091; Original Russian, Doklady Akademii Nauk, 477 (2017) 475-479. [Back]
  59. C. M. Dundas, A. M. Bramson, L. Ojha, J. Wray, M. T. Mellon, S. Byrne, A. S. McEwen, N. E. Putzig, D. Viola, S. Sutton, E. Clark and J. W. Holt, Exposed subsurface ice sheets in the Martian mid-latitudes, Science359 (2018) 199-201. [Back]
  60. J. M. Rodgers and T. Ichiye, Multipole moments of water molecules and the aqueous solvation of monovalent ions, Journal of Molecular Liquids, 228 (2017) 54-62. [Back]
  61. T. Fujita, The status and future of fine bubble generation, measurements and applications, 7th International Symposium of Fine Bubble Technology, Sydney, Australia (2016). [Back]
  62. C. M Tonauer, M. Seidl-Nigsch and T. Loerting, High-density amorphous ice: nucleation of nanosized low-density amorphous ice, Journal of Physics: Condensed Matter, 30 (2018) 034002. [Back, 2, 3]
  63. A. Roy, 1, M. A. Hickner, H.-S. Lee, T. Glass, M. Paul, A. Badami, J. S. Riffle and J. E. McGrath, States of water in proton exchange membranes: Part A - Influence of chemical structure and composition, Polymer, 111 (2017) 297-306. [Back]
  64. V. V. Goncharuk, A. V. Syroeshkin, T. V. Pleteneva, E. V. Uspenskaya, O. V. Levitskaya and V. A. Tverdislov, On the possibility of chiral structuredensity submillimeter inhomogeneities existing in water, Journal of Water Chemistry and Technology, 39 (2017) 319-324, doi: 0.3103/S1063455X17060029, Original Russian, Khimiya i Tekhnologiya Vody, 39 (2017) 572-583. [Back, 2]
  65. J. C. del Valle, C. Aragó, M. I. Marqués and J. A. Gonzalo, Paraelectric response of water in the range 0–100°C, Ferroelectrics, 466 (2014) 166-180. [Back]
  66. R. B. Fenwick, D. Oyen, H. J. Dyson and P. E. Wright, Slow dynamics of tryptophan-water networks in proteins, Journal of the American Chemical Society, 140 (2018) 675-682. [Back]
  67. P. M. Cox, C. Huntingford and M. S. Williamson, Emergent constraint on equilibrium climate sensitivity from global temperature variability, Nature, 553 (2018) 319-322. [Back]
  68. N. A. Mishchuk and V. V. Goncharuk, On the nature of physical properties of water, Journal of Water Chemistry and Technology, 39 (2017) 125-131, Original Russian, Khimiya i Tekhnologiya Vody, 39 (2017) 227-240. [Back]
  69. M. Fan, D. Tao, R. Honaker and Z. Luo, Nanobubble generation and its application in froth flotation (part I): nanobubble generation and its effects on properties of microbubble and millimeter scale bubble solutions Mining Science and Technology, 20 (2010) 0001-0019; M. Fan, D. Tao, R. Honaker and Z. Luo, Nanobubble generation and its applications in froth flotation (part II): fundamental study and theoretical analysis Mining Science and Technology, 20 (2010) 0159-0177; M. Fan, D. Tao, R. Honaker and Z. Luo, Nanobubble generation and its applications in froth flotation (part III): specially designed laboratory scale column flotation of phosphate, Mining Science and Technology, 20 (2010) 0317-0338; M. Fan, D. Tao, R. Honaker and Z. Luo, Nanobubble generation and its applications in froth flotation (part IV): mechanical cells and specially designed column flotation of coal, Mining Science and Technology, 20 (2010) 0641-0671. [Back]
  70. P. Knüpfer, L. Ditscherlein and U. A. Peuker, Nanobubble enhanced agglomeration of hydrophobic powders
    Colloids and Surfaces A, 530 (2017) 117-123. [Back]
  71. H. Oliveira, A. Azevedo and J. Rubio, Nanobubbles generation in a high-rate hydrodynamic cavitation tube,
    Minerals Engineering, 116 (2018) 32-34. [Back]
  72. L. del Rosso, M. Celli, D. Colognesi, S. Rudi, N. J. English, C. J. Burnham and L. Ulivi, Dynamics of hydrogen guests in ice XVII nanopores, Phyical Review Materials, 1 (2017) 065602,

    doi: 10.1103/PhysRevMaterials.1.065602, arXiv:1706.09350v2 [cond-mat.other] 17 Nov 2017. [Back]

  73. S. Shimizu and N.Matubayasi, Hydrotropy and scattering: pre-ouzo as an extended near-spinodal region, Physical Chemistry Chemical Physics, 19 (2017) 26734-26742. [Back]
  74. D. Munoz-Santiburcio and D. Marx, Chemistry in nanoconfined water, Chemical Science, 8 (2017) 3444-3452. [Back]
  75. M. Feig, I. Yu, P. Wang, G. Nawrocki and Y. Sugita, Crowding in cellular environments at an atomistic level from
    computer simulations, Journal of Physical Chemistry B, 121 (2017 ) 8009-8025. [Back] [Back to Top to top of page]
  76. P. W. Rosenkranz, Water vapor microwave continuum absorption: A comparison of measurements and models, Radio Science, 33 (1998) 919-928; G. E. Nedoluha, M. Kiefer, S. Lossow, R. M.Gomez, N. Kämpfer, M. Lainer, P. Forkman, O. M. Christensen, J. J. Oh, P. Hartogh, J. Anderson, K. Bramstedt, B. M. Dinelli, M. Garcia-Comas, M. Hervig, D. Murtagh, P. Raspollini, W. G. Read, K. Rosenlof, G. P. Stiller and K. A. Walker, The SPARC water vapor assessment II: intercomparison of satellite and ground-based microwave measurements, Atmospheric Chemistry and Physics, 17 (2017) 14543-14558. [Back]
  77. K. Sverdrup, S.-J. Kimmerle and P. Berg, Computational investigation of the stability and dissolution of nanobubbles, Applied Mathematical Modelling, 49 (2017) 199-219. [Back]
  78. T. Uchida, S. Oshita, M.Ohmori, T. Tsuno, K. Soejima, S. Shinozaki, Y. Take and K. Mitsuda, Transmission electron microscopic observations of nanobubbles and their capture of impurities in wastewater, Nanoscale Research Letters, 6 (2011) 295; T. Uchida, H. Nishikawa, N. Sakurai , M. Asano and N. Noda, Ultra-fine bubble distributions in a plant factory observed by transmission electron microscope with a freeze-fracture replica technique, Nanomaterials , 8 (2018) 152; doi:10.3390/nano8030152. [Back]
  79. T. Tuziuti, K. Yasui and W. Kanematsu, Influence of increase in static pressure on bulk nanobubbles, Ultrasonics - Sonochemistry, 38 (2017) 347-350. [Back]
  80. R. Etchepare, A. Azevedo, S. Calgaroto and J. Rubio, Removal of ferric hydroxide by flotation with micro and nanobubbles, Separation and Purification Technology, 184 (2017) 347-353. [Back]
  81. V. Mazzini and V. S.J. Craig, Specific-ion effects in non-aqueous systems, Current Opinion in Colloid & Interface Science, 23 (2016) 82-93. [Back]
  82. Y. Ye, N. Ning, M. Tian, L. Zhang and J. Mi, Thermodynamic and dynamical heterogeneities during glass transition of water, Journal of Molecular Liquids, 253 (2018) 91-95. [Back]
  83. B. Wu, X. Wang, J. Yang, Z. Hua, K. Tian, R. Kou, J. Zhang, S. Ye, Y. Luo, V. S. J. Craig, G. Zhang and G. Liu, Reorganization of hydrogen bond network makes strong polyelectrolyte brushes pH-responsive, Science Advances, 2 (2016) e1600579. [Back]
  84. R. T. Hall and J. M. Dowling, Pure rotational spectrum of water vapor. The Journal of Chemical Physics, 47 (1967) 2454-2461; R. T. Hall and J. M. Dowling, Erratum: Pure rotational spectrum of water vapor, The Journal of Chemical Physics, 54 (1971) 4968. [Back]
  85. P. Bruździak, A. Panuszko, E. Kaczkowska, B. Piotrowski, A. Daghir, S. Demkowicz and J. Stangret, Taurine as a water structure breaker and protein stabilizer, Amino Acids, 50 (2018) 125-140. [Back]
  86. C. Y. Son, A. Yethiraj, and Q. Cui, Cavity hydration dynamics in cytochrome c oxidase and functional implications, Proceedings of the National Academy of Sciences, 114 (2017) E8830-E8836. [Back]
  87. T. H. van der Loop, N. Ottosson, T. Vad, W. F. C. Sager, H. J. Bakker and S. Woutersen, Communication: Slow proton-charge diffusion in nanoconfined water, The Journal of Chemical Physics, 146 (2017) 131101. [Back]
  88. M. Yang, Z. R. Chong, J. Zheng, Y. Song and P. Linga, Advances in nuclear magnetic resonance (NMR) techniques for the investigation of clathrate hydrates, Renewable and Sustainable Energy Reviews, 74 (2017) 1346-1360. [Back]
  89. K. Wynne, The mayonnaise effect, Journal of Physical Chemistry Letters, 8 (2017) 6189-6192. [Back]
  90. W. Kaminski, J. Marszalek and E. Tomczak, Water desalination by pervaporation – Comparison of energy consumption, Desalination, 433 (2018) 89-93. [Back]
  91. S. J. Buwalda, T. Vermonden and W. E. Hennink, Hydrogels for therapeutic delivery: Current developments and future directions, Biomacromolecules, 18 (2017) 316-330. [Back]
  92. T. Kawakami, M. Nakada, H. Shimura, K. Okada and M. Kimura, Hydration structure of reverse osmosis membranes studied via neutron scattering and atomistic molecular simulation, Polymer Journal, 50 (2018) 327-336. [Back]
  93. Q. Zhang, T. Wu, C. Chen, S. Mukamel and W. Zhuang, Molecular mechanism of water reorientational slowing down in concentrated ionic solutions, Proceedings of the National Academy of Sciences, 114 (2017) 10023-10028. [Back]
  94. M. E. Mazurov and V. A. Tverdislov, The mechanism of self-organization in a surface water microlayer utilizing thermocapillary convection, Biophysics, 61 (2016) 833-837; Original Russian, M. E. Mazurov, V. A. Tverdislov, Biofizika, 61 (2016) 1068-1072. [Back]
  95. E. N. Kozlovskaya, G. A. Pitsevich, A. E. Malevich, O .P. Doroshenko, V. E. Pogorelov, I. Yu. Doroshenko, V. Balevicius, V. Sablinskas and A. A. Kamnev, Raman spectroscopic and theoretical study of liquid and solid water within the spectral region 1600–2300cm−1. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 196 (2018) 406-412. [Back]
  96. S. Calgaroto, A. Azevedo and J. Rubio, Flotation of quartz particles assisted by nanobubbles, International Journal of Mineral Processing, 137 (2015) 64-70; A. F. Rosa and J. Rubio, On the role of nanobubbles in particle- bubble adhesion for the flotation of quartz and apatitic minerals, Minerals Engineering, 127 (2018) 178-184. [Back]
  97. Z. Slanina, F. Uhlík, S. Nagase, T. Akasaka, X. Lu and L. Adamowicz, Cyclic water-trimer encapsulation into D2 (22)- C84 fullerene, Chemical Physics Letters, 695 (2018) 245-248. [Back]
  98. F. Librizzi, R. Carrotta, J. Peters and A. Cupane, The effects of pressure on the energy landscape of proteins, Scientific Reports, 8 (2018) 2037. [Back]
  99. M. Millot, S. Hamel, J. R. Rygg, P. M. Celliers, G. W. Collins, F.Coppari, D. E. Fratanduono, R. Jeanloz, D. C. Swift and J. H. Eggert, Experimental evidence for superionic water ice using shock compression, Nature Physics, 14 (2018) 297-302 (2018). [Back, 2]
  100. R. M. Tutchton and Z. Wu, Formation of spherical ice-shells inside carbon fullerenes, Physical Chemistry Chemical Physics, 19 (2017) 30726-30733. [Back] [Back to Top to top of page]



Home | Site Index | Site Map | Search | LSBU | Top


This page was established in 2017 and last updated by Martin Chaplin on 27 June, 2020

Creative Commons License
This work is licensed under a Creative Commons Attribution
-Noncommercial-No Derivative Works 2.0 UK: England & Wales License