Your browser does not support JavaScript!
Water site headerMasthead Island, Great Barrier Reef Print-me keygo to Water Visitor Book contributions
 Go to my page Water Structure and Science

Water Structure and Science, References 3301- 3400

 

  1. M. R. Walsh, C. A. Koh, E. D. Sloan, A. K. Sum and D. T. Wu, Spontaneous methane hydrate nucleation and growth, Science, 326 (2009) 1095-1098. [Back]
  2. R. G. Grim, B. C. Barnes, P. G. Lafond, W. A. Kockelmann, D. A. Keen, A. K. Soper, M. Hiratsuka, K. Yasuoka, C. A. Koh and A. K. Sum, Observation of interstitial molecular hydrogen in clathrate hydrates, Angewandte Chemie International Edition, 53 (2014) 10710-10713. [Back]
  3. W. T. S. Cole, J. D. Farrell, A. A. Sheikh, O. Yonder, R. S. Fellers, M. R. Viant, D. J. Wales and R. J. Saykally, Terahertz VRT spectroscopy of the water hexamer-d12 prism: Dramatic enhancement of bifurcation tunneling
    upon librational excitation, The Journal of Chemical Physics, 148 (2018) 094301. [Back]
  4. R. K. Lam, J. W. Smith, A. M. Rizzuto, O. Karslıoglu, H. Bluhm and R. J. Saykally, Reversed interfacial fractionation of carbonate and bicarbonate evidenced by X-ray photoemission spectroscopy, The Journal of Chemical Physics, 146 (2017) 094703. [Back, 2]
  5. R. K. Lam, S. L. Raj, T. A. Pascal, C. D. Pemmaraju, L. Foglia, A. Simoncig, N. Fabris, P. Miotti, C. J. Hull, A. M. Rizzuto, J.W. Smith, R. Mincigrucci, C. Masciovecchio, A. Gessini, E. Allaria, G. De Ninno, B. Diviacco, E. Roussel, S. Spampinati, G. Penco, S. Di Mitri, M. Trovò, M. Danailov, S. T. Christensen, D. Sokaras, T.-C. Weng, M. Coreno, L. Poletto, W. S. Drisdell, D. Prendergast, L. Giannessi, E. Principi, D. Nordlund, R. J. Saykally and C. P. Schwartz, Soft X-Ray second harmonic generation as an interfacial probe, Physical Review Letters, 120 (2018) 023901; A. Nilsson, X-Ray probe targets interfaces, Physics, 11 (2018) 2. [Back]
  6. J. W. Smith and R. J. Saykally, Soft X‑ray absorption spectroscopy of liquids and solutions, Chemical Reviews, 117 (2017) 13909-13934. [Back]
  7. A. M. Rizzuto, E. S. Cheng, R. K. Lam and R. J. Saykally, Surprising effects of hydrochloric acid on the water evaporation coefficient observed by raman thermometry, Journal of Physical Chemistry C, 121 (2017) 4420-4425. [Back]
  8. W. T. S. Cole, R. S. Fellers, M. R. Viant and R. J. Saykally, Hydrogen bond breaking dynamics in the water pentamer: Terahertz VRT spectroscopy of a 20 μm libration, The Journal of Chemical Physics, 146 (2017) 014306. [Back]
  9. M. Khurana, Z. Yin and P. Linga, A review of clathrate hydrate nucleation, ACS Sustainable Chemical Engineering, 5 (2017) 11176-11203. [Back]
  10. J. F. Gabitto and C. Tsouris, Physical properties of gas hydrates: A review, Journal of Thermodynamics, (2010) 271291. [Back]
  11. J. S. Loveday and R. J. Nelmes, High-pressure gas hydrates Journal of Physical Chemistry Letters, 8 (2017) 4295-4299. [Back]
  12. U. Ranieri, M. M. Koza, W. F. Kuhs, S. Klotz, A. Falenty, P. Gillet and L.E. Bove, Fast methane diffusion at the interface of two clathrate structures, Nature Communications, 8 (2017) 1076. [Back]
  13. T. C. Hansen, C. Sippel and W. F. Kuhs, Approximations to the full description of stacking disorder in ice I for powder diffraction, Zeitschrift für Kristallographie, 230 (2015) 75-86. [Back]
  14. W. J. Smit and H. J. Bakker, The surface of ice is like supercooled liquid water, Angewandte Chemie International Edition, 56 (2017) 15540-15544. [Back]
  15. H. Hirai, H. Kadobayashi, N. Hirao, Y. Ohishi, M. Ohtake, Y. Yamamoto and S. Nakano, Time-resolved x-ray diffraction and Raman studies of the phase transition mechanisms of methane hydrate, The Journal of Chemical Physics, 142 (2015) 024707. [Back]
  16. Y. Liu and L. Ojamaë, Clathrate ice sL: a new crystalline phase of ice with ultralow density predicted by first-principles phase diagram computations, Physical Chemistry Chemical Physics, 20 (2018) 8333-8340. [Back]
  17. Y. Xu, N. G. Petrik, R. S. Smith, B. D. Kay and G. A. Kimmel, Growth rate of crystalline ice and the diffusivity of supercooled water from 126 to 262 K, Proceedings of the National Academy of Sciences, 113 (2016) 14921-14925; Y. Ni, N. J. Hestand and J. L. Skinner, Communication: Diffusion constant in supercooled water as the Widom line is crossed in no man’s land, The Journal of Chemical Physics, 148 (2018) 191102. [Back]
  18. N. Giovambattista, , F. W. Starr and and P. H. Poole, Influence of sample preparation on the transformation of low-density to high-density amorphous ice: An explanation based on the potential energy landscape, The Journal of Chemical Physics, 147 (2017) 044501. [Back]
  19. L. Fumagalli, A. Esfandiar, R. Fabregas, S. Hu, P. Ares, A. Janardanan, Q. Yang, B. Radha, T. Taniguchi,
    K. Watanabe, G. Gomila, K. S. Novoselov and, A. K. Geim, Anomalously low dielectric constant of confined water, Science, 360 (2018) 1339-1342; arxiv.org/abs/1806.04486. [Back]
  20. W. F. Kuhs, T. C.Hansen and A. Falenty, Filling ices with helium and the formation of helium clathrate hydrate, Journal of Physical Chemistry Letters, 9 (2018) 3194-3198. [Back]
  21. A. Arbe, P. M. de Molina, F. Alvarez, B. Frick and J. Colmenero, Dielectric susceptibility of liquid water: Microscopic insights from coherent and incoherent neutron scattering, Physical Review Letters, 117 (2016) 185501; J.Teixeira, Deciphering water's dielectric constant, Physics, 9 (2016) 122. [Back]
  22. J. Teixeira, The contribution of small angle and quasi-elastic scattering to the physics of liquid water, Journal of Physics.: Conference Series, 848 (2017) 012003. [Back]
  23. T. Li, S. Kheifets, D. Medellin and M. G. Raizen, Measurement of the instantaneous velocity of a Brownian particle Science, 328 (2010) 1673-1675; T. Li and M. G. Raizen, Brownian motion at short time scales, arXiv:1211.1458v1 [cond-mat.stat-mech] 7 Nov 2012; S. Kheifets, A. Simha, K. Melin, T. Li and M. G. Raizen† Observation of Brownian motion in liquids at short times: Instantaneous velocity and memory loss, Science, 343 (2014) 1493; M. G. Raizen and T. Li, The measurement Einstein deemed impossible, Physics Today, 68 (2015) 56-57;(e) R. M. Neumann, On the humble origins of the Brownianentropic force , arXiv:1506.05178 [cond-mat.stat-mech] 17 Jun 2015. [Back]
  24. A. Rosu-Finsen and C. G. Salzmann, Benchmarking acid and base dopants with respect to enabling the ice V to XIII and ice VI to XV hydrogen-ordering phase transitions, The Journal of Chemical Physics, 148 (2018) 244507; arXiv:1801.03812 [cond-mat.mtrl-sci] 11 Jan 2018. [Back, 2]
  25. M. H. Moore and R. K. Khanna, Infrared and mass spectral studies of proton irradiated H2O + CO2 ice: Evidence for carbonic acid, Spectrochimica Acta Part A. 47A (1990) 255-262; J. Bernard, M. Seidl, I. Kohl, K. Liedl, E. Mayer, O. Gálvez, H. Grothe and T. Loerting, Spectroscopic observation of matrix-isolated carbonic acid trapped from the gas phase, Angewandte Chemie International Edition, 50 (2011) 1939 -1943; H. P. Reisenauer, J. P. Wagner and P. R. Schreiner, Gas-phase preparation of carbonic acid and its monomethyl ester. Angewandte Chemie International Edition, 53 (2014) 11766-11771. [Back]  [Back to Top to top of page]
  26. E. H. Abramson, O. Bollengier, J. M.Brown, B. Journaux, W. Kaminsky and A.Pakhomova, Carbonic acid monohydrate, The American Minerologist, (2018) Article in press, doi: 10.2138/am-2018-6554. [Back]
  27. C. Petuya, F. Damay, D. Talaga, and A. Desmedt, Guest partitioning in carbon monoxide hydrate by Raman spectroscopy, The Journal of Physical Chemistry C, 121 (2017) 13798-13802. [Back]
  28. P. C. Brewer, C. Friederich, E. T. Peltzer and F. M. Orr Jr., Direct experiments on the ocean disposal of fossil fuel CO2, Science, 284 (1999) 943-945. [Back]
  29. P. A. Tomar, V. R. Shaikh and K. J. Patil, Tetraalkylammonium bromidewater mixtures revisited: Isothermal compressibility and internal pressure variation in limiting concentration range at 298.15 K, Journal of Chemical Thermodynamics (2018) Article in press, doi: 10.1016/j.jct.2018.06.020. [Back]
  30. D. Turnbull, Kinetics of heterogeneous nucleation, The Journal of Chemical Physics, 18 (1950) 198-203; K. A. Cooper and J. G. Watkinson, The supercooling of aqueous hydrogen peroxide, Transactions of the Faraday Society, 53 (1957) 635-641. [Back]
  31. A. A Fedorets, M. Frenkel, E. Shulzinger, L. A. Dombrovsky, E. Bormashenko and M. Nosonovsky, Self-assembled levitating clusters of water droplets: pattern-formation and stability, Scientific Reports, 7 (20171888; A. A. Fedorets, L. A. Dombrovsky and P. I. Ryumin, Expanding the temperature range for generation of droplet clusters over the locally heated water surface, International Journal of Heat and Mass Transfer, 113 (2017) 1054-1058. [Back]
  32. G. Wen, C. Qiang, Y. Feng, T. Huang and J. Ma, Bromate formation during the oxidation of bromide-containing water by ozone/peroxymonosulfate process: Influencing factors and mechanisms, Chemical Engineering Journal ,(2018) Article in press, doi: 10.1016/j.cej.2018.06.186. [Back]
  33. P. Sripa, A. Tongraar and T. Kerdcharoen, Characterization of the F−-water and Cl−-water hydrogen bonds in aqueous solution: From “interior” (I) to “surface” (S) states, Journal of Molecular Liquids, 248 (2017) 271-277. [Back]
  34. W .H. Koppenol, D. M. Stanbury and P. Bounds, Electrode potentials of partially reduced oxygen species, from dioxygen to water, Free Radical Biology and Medicine, 49 (2010) 317-322; J. M.. Martinez de llarduya and F. Villafaine, A warning for frost diagrams users, Journal of Chemical Education, 71 (1994) 480-482. [Back]
  35. V. Rozsa, D. Pan, F. Giberti and G. Galli, Ab initio spectroscopy and ionic conductivity of water under Earth mantle conditions, Proceedings of the National Academy of Sciences, (2018) Article in press, doi: 10.1073/pnas.1800123115. [Back]
  36. S. M. A. Malek, P. H. Poole and I. Saika-Voivod, Thermodynamic and structural anomalies of water nanodroplets, Nature Communications, 9 (2018)2402. [Back]
  37. Y. Ni, N. J. Hestand and J. L. Skinner, Communication: Diffusion constant in supercooled water as the Widom line is crossed in no man’s land, The Journal of Chemical Physics, 148 (2018) 191102. [Back, 2]
  38. L. J. Debbeler, M. Gamp, M. Blumenschein, D. Keimb and B. Renner, Polarized but illusory beliefs about tap and bottled water: A product- and consumer-oriented survey and blind tasting experiment, Science of the Total Environment, 643 (2018) 1400-1410. [Back]
  39. A. Kilaj, H. Gao, D. Rösch, U. Rivero, J. Küpper and S. Willitsch, Observation of different reactivities of para and ortho- water towards trapped diazenylium ions, Nature Communications, 9 (2018) 2096; P.Ball, Spins doctor water's reactivity, Chemistry World, 15(7) (2018) 40. [Back]
  40. J. M. Kahk, B. H. Tan, C.-D.r Ohl and N. D. Loh, Viscous field-aligned water exhibits cubic-ice-like structural motifs, Physical Chemistry Chemical Physics, (2018) Article in press, doi: 10.1039/c8cp02697a. [Back]
  41. S. Perticaroli, L. Comez, P. Sassi, A. Morresi, D. Fioretto and M. Paolantoni, Water-like behavior of formamide: Jump reorientation probed by extended depolarized light scattering, Journal of Physical Chemistry Letters, (2018) Article in press, doi: 10.1021/acs.jpclett.7b02943. [Back]
  42. E. M. Kosower, Negative infrared bands—A new phenomenon in the vibrational spectroscopy of water oligomers. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, (2018) Article in press, doi:10.1016/j.saa.2018.07.022; E. M. Kosower and G. Borz, Low polarity water, a novel transition species at
    the polyethylene–water interface, Physical Chemistry Chemical Physics, 17 (2015) 24895. [Back]
  43. M. Bertasa, T. Poli, C. Riedo, V. Di Tullio, D. Capitani, N. Proietti, C. Canevali, A. Sansonetti and D. Scalarone, A study of non-bounded/bounded water and water mobility in different agar gels, Microchemical Journal, 139 (2018) 306-314. [Back]
  44. R. Fuentes-Azcatl and M. C. Barbosa, Thermodynamic and dynamic anomalous behavior in the TIP4P/ε water model, Physica A, 444 (2016) 86-94. [Back]
  45. K. Roger, E. Sparr and H. Wennerström, Evaporation, diffusion and self-assembly at drying interfaces, Physical Chemistry Chemical Physics, 20 (2018) 10430. [Back]
  46. R.-L. Sang and L.Xu, Reversible formation of regular pentagonal dodecahedral (H2O)20 in a 2D metal–organic framework, CrystEngComm, 12 (2010) 1377-1381. [Back]
  47. M. N. C. Zarycz and C. F. Guerra, NMR 1H‑shielding constants of hydrogen-bond donor reflect manifestation of the Pauli Principle, Journal of Physical Chemistry Letters, 9 (2018) 3720-3724. [Back, 2, 3]
  48. K.-I. Oh, K. Rajesh, J. F. Stanton, and C. R. Baiz, Quantifying hydrogen-bond populations in dimethyl sulfoxide/ water mixtures, Angewandte Chemie International Edition, ,56 (2017) 11375-11379. [Back]
  49. E. Humeres, Mechanisms of water catalysed reactions, Molecules, 5 (2000) 307-308. [Back]
  50. R. Sampathkumar, D. Gopalakrishnan and A.C. Kumbharkhane, The complex permittivity is hydration dynamics of collagen in aqueous buffer solution as studied by time domain dielectric spectroscopy. International Journal of Biological Macromolecules, (2018) Article in press, doi:10.1016/j.ijbiomac.2018.07.020. [Back]  [Back to Top to top of page]
  51. S. C. de Morais, O. R. Cardoso and R. de C. Balaban, Thermal stability of water-soluble polymers in solution, Journal of Molecular Liquids, (2018) Article in press, doi:10.1016/j.molliq.2018.07.033. [Back, 2]
  52. F. Bruni, C. Di Mino, S. Imberti, S. E McLain, N. H. Rhys and M. A. Ricci, Hydrogen bond length as a key to understanding sweetness, Journal of Physical Chemistry Letters, (2018) Article in press, doi: 10.1021/acs.jpclett.8b01280. [Back]
  53. J. Zhang, Q. Cheng and Y. Wang, One thirsty world -- Analysis of the water resources, IOP Conference. Series: Earth and Environmental Science, 170 (2018) 022092. [Back]
  54. L. G. M. Pettersson, R. H. Henchman and A. Nilsson, “Water—the most anomalous liquid”, Chemical Reviews, 116 (2016) 7459-7462. [Back]
  55. C. Yang and X. Zhou, The multiple local structures in liquid water, International Journal of Modern Physics B, 32 (2018) 1840003. [Back, 2]
  56. M. Paolantoni, N. F. Lago, M., Alberti and A. Lagana, Tetrahedral ordering in water: Raman profiles and their temperature dependence. J. Phys. Chem. A, 113 (2009) 15100-15105. [Back]
  57. S.-N. Hong, S.-H. Choe, U.-G. Jong, M.-S. Pak and C.-J. Yu, The maximum interbubble distance in relation to the radius of spherical stable nanobubble in liquid water: A molecular dynamics study, (2018); arXiv:1807.02275v1 [physics.chem-ph] 6 Jul 2018. [Back]
  58. H. Okajima, M. Ando and H. Hamaguchi, Formation of “Nano-Ice” and density maximum anomaly of water,
    Bulletin of the Chemical Society of Japan. 91 (2018) 991-997. [Back, 2, 3]
  59. P. M. Geethu, Ve. T. Ranganathan and D. K. Satapathy, Inferences on hydrogen bond networks in water from isopermitive frequency investigations, Journal of Physics: Condensed Matter, (2018) Article in press, doi: 10.1088/1361-648X/aacf2c. [Back]
  60. V. M. Gun’ko, I. N. Savina and S. V. Mikhalovsky, Properties of water bound in hydrogels, Gels, 3 (2017) 37. [Back]
  61. G. Ukpai, G. Năstase, A. Şerban and B. Rubinsky, Pressure in isochoric systems containing aqueous solutions at subzero Centigradetemperatures, PLoS ONE, 12 (2017) e0183353. [Back]
  62. A. V. Melkikh and D. K.F. Meijer, On a generalized Levinthal's paradox: The role of long- and short range interactions in complex bio-molecular reactions, including protein and DNA folding, Progress in Biophysics and Molecular Biology, 132 (2018) 57-79; D. F. K. Meijer and H. J. H. Geesink, Guided folding of Life’s proteins in integrate cells with holographic memory and GM-Biophysical steering. Open Journal of Biophysics, 8 (2018)
    117-154. [Back]
  63. S. M. Pershin, V. N. Lednev and A. N. Fedorov, The problem of the water transparency bandwidth (1.8–11.2 eV) and hydrogen bonds, Bulletin of the Lebedev Physics Institute, 45 (2018) 35–38; Original Russian Text, Kratkie Soobshcheniya po Fizike, 45 (2018) 3-9. [Back, 2, 3, 4]
  64. H. E. Corey, Stewart and beyond: New models of acid-base balance, Kidney International, 64 (2003) 777-787; R. E. Aristizábal-Salazar, L. F. Calvo-Torres, L. A. Valencia-Arango, M. Montoya-Canon, O. Barbosa-Gantiva and V. Hincapié-Baenarev, Acid–base equilibrium: The best clinical approach, Colombian Journal of Anesthesiology, 43 (2015) 219-224. [Back]
  65. Z.-S. Li, L.-S. Tang, L.-J. Zhang and Z.-G. Luo, Dewatering sludge by osmotic technique – A comparative experimental study, Drying Technology, (2018) Article in press, doi: 10.1080/07373937.2018.1454939. [Back]
  66. I. Zhovtobriukh, N. A. Besley, T. Fransson, A. Nilsson, and L. G. M. Pettersson, Relationship between x-ray emission and absorption spectroscopy and the local H bond environment in water, The Journal of Chemical Physics, 148 (2018) 144507. [Back]
  67. C. Xiang, K. M. Papadantonakis and N. S. Lewis, Principles and implementations of electrolysis systems for water splitting, Material Horizons, 3 (2016) 169-173. [Back]
  68. A. P. Gaiduk, T. A. Pham, M. Govoni, F. Paesani and G. Galli, Electron affinity of liquid water, Nature Communications, 9 (2018) 247. [Back]
  69. F. Perakis, G. Camisasca , T. J. Lane, A. Späh, K. T. Wikfeldt, J. A. Sellberg 3, F. Lehmkühler 4,5, H. Pathak 1, K. H. Kim1, K. Amann-Winkel, S.Schreck, S. Song , T. Sato, M. Sikorski, A. Eilert, T. McQueen, H. Ogasawara, D. Nordlund , W. Roseker, J. Koralek, S. Nelson, P. Hart, R. Alonso-Mori, Y. Feng, D. Zhu, A. Robert , G. Grübel, L. G. M. Pettersson and A. Nilsson, Coherent X-rays reveal the influence of cage effects on ultrafast water dynamics, Nature Communications, 9 (2018) 1917. [Back]
  70. A. E. A. Fouda, G. I. Purnell and N. A. Besley, Simulation of ultra-fast dynamics effects in resonant inelastic X-ray scattering of gas phase water, Journal of Chemical Theory and Comput.ation, (2018) Article in press, doi: 10.1021/acs.jctc.8b00211. [Back]
  71. J.-H. Choi, H. Lee, H. R. Choi and Minhaeng Cho, Graph theory andion and molecular aggregation in aqueous solutions, Annual Review of Physical Chemistry, 69 (2018) 5.1-5.25. [Back]
  72. L. Fumagalli, A. Esfandiar, R. Fabregas, S. Hu, P. Ares, A. Janardanan, Q. Yang, B. Radha, T. Taniguchi, K. Watanabe, G. Gomila, K. S. Novoselov and A. K. Geim, Anomalously low dielectric constant of confined water, Science, 360 (2018) 1339-1342 ; S. V. Kalinin, Feel the dielectric force, Science, 360 (2018) 1302. [Back, 2]
  73. R. Orosei, S. E. Lauro, E. Pettinelli, A. Cicchetti, M. Coradini, B. Cosciotti, F. Di Paolo, E. Flamini, E. Mattei, M. Pajola, F. Soldovieri, M. Cartacci, F. Cassenti, A. Frigeri, S. Giuppi, R. Martufi, A. Masdea, G. Mitri, C. Nenna, R. Noschese, M. Restano and R. Seu, Radar evidence of subglacial liquid water on Mars, Science, (2018) Article in press, doi: 10.1126/science.aar7268; P. Ball, Is there life on mars, Chemistry World, 15(9) (2018) 29. [Back]
  74. Q. Y. Mu, C. W. W. Ng, C. Zhou, G. G. D. Zhou and H. J. Liao, A new model for capturing void ratio-dependent unfrozen water characteristics curves, Computers and Geotechnics, 101 (2018) 95-99; J. Ren and S. K. Vanapalli, Discussion on “A new model for capturing void ratio-dependent unfrozen water characteristics curves” by Q.Y. Mu, C.W.W. Ng, C. Zhou, G.G.D. Zhou, and H.J. Liao, Computers and Geotechnics, 103 (2018) 82-85; Q. Y. Mu, C. W. W. Ng, C. Zhou, G. G. D. Zhou and H. J. Liao, Reply to the discussion by Ren and Vanapalli on “A new model for capturing void ratio-dependent unfrozen water characteristics curves”, Computers and Geotechnics, 103 (2018) 151-152. [Back]
  75. C. Thomas, O. Mousis, S. Picaud and V. Ballenegger, Variability of the methane trapping in martian subsurface clathrate hydrates, Planetary and Space Science, 57 (2009) 42-47. [Back]  [Back to Top to top of page]
  76. R. de Levie, Potentiometric pH measurements of acidity are approximations, Some more useful than others, Journal of Chemical Education, 87 (2010) 1188-1194. [Back]
  77. D. J. Graham, B. Jaselskis and C. E. Moore, Development of the glass electrode and the pH response, Journal of Chemical Education, 90 (2013) 345-351. [Back]
  78. J. A. Illingworth, A common source of error in pH measurements, Biochemical Journal, 195 (1981) 259-262. [Back]
  79. T. F. Whale, M. A. Holden, T. W. Wilson, D. O'Sullivan and B. J. Murray, The enhancement and suppression of immersion mode heterogeneous ice-nucleation by solutes, Chemical Science, 9 (2018) 4142-4151; C. Harding, Scientists rethink cloud ice formation, Chemistry World, 15(5) (2018) 45. [Back]
  80. R. W. Ramette, Outmoded Terminology: The Normal Hydrogen Electrode, Journal of Chemical Education, 64 (1987) 885. [Back]
  81. F. Ambrosio, G. Miceli and A. Pasquarello, Electronic levels of excess electrons in liquid water, Journal of Physical Chemistry Letters, 8 (2017) 2055-2059. [Back]
  82. F. Ambrosio, Z. Guo and A. Pasquarello, Absolute energy levels of liquid water, Journal of Physical Chemistry Letters, (2018) Article in press, doi: 10.1021/acs.jpclett.8b00891. [Back]
  83. C. Yan, P. L Kramer, R. Yuan and M. D. Fayer, Water dynamics in polyacrylamide hydrogels, Journal of the American Chemical Society, (2018) Article in press, doi: 10.1021/jacs.8b03547. [Back]
  84. A. Kumar, J. A. Walker, D. M. Bartels, and M. D. Sevilla, A simple ab initio model for the hydrated electron that matches experiment, Journal of Physical Chemistry A, 119 (2015) 9148-9159. [Back]
  85. J. G. Constantin, M. M. Gianetti, M. P. Longinotti and H. R. Corti, The quasi-liquid layer of ice revisited: the role of temperature gradients and tip chemistry in AFM studies, Atmospheric. Chemistry and Physics Discusions, (2018) Article in press, doi: 10.5194/acp-2017-1213. [Back]
  86. J. Mališ, M. Paidar, T. Bystron, L. Brozová, A. Zhigunov and K. Bouzek, Changes in Nafion® 117 internal structure and related properties during exposure to elevated temperature and pressure in an aqueous environment, Electrochimica Acta, 262 (2018) 264-275. [Back]
  87. V. Yu. Levashov, A.P. Kryukov and I. N. Shishkova, Influence of the noncondensable component on the characteristics of temperature change and the intensity of water droplet evaporation, International Journal of Heat and Mass Transfer, 127 (2018) 115-122. [Back]
  88. B.-S. Lee, Pressure, temperature and concentration effects on hydrogen bonding in poly(ethylene oxide) aqueous solution, Journal of Molecular Liquids, 262 (2018) 527-532. [Back]
  89. S. Ahmed, A. Pasti, R. J. Fernández-Terán, G. Ciardi, A. Shalit and P. Hamm, Aqueous solvation from the water perspective, The Journal of Chemical Physics, 148 (2018) 234505. [Back]
  90. Z. Xing, A. Caciagli, T. Cao, I. Stoev, M. Zupkauskas, T. O’Neill, T. Wenzel, R. Lamboll, D. Liu, and E. Eiser, Microrheology of DNA hydrogels, Proceedings of the National Academy of Sciences, 115 (2018) 8137-8142. [Back]
  91. D. Seo, A. M. Schrader, S.-Y. Chen, Y. Kaufman, T. R. Cristiani, S. H. Page, P. H. Koenig, Y. Gizaw, D. W. Lee and J. N. Israelachvili, Rates of cavity filling by liquids, Proceedings of the National Academy of Sciences, (2018) Article in press, doi: 10.1073/pnas.1804437115. [Back]
  92. H. Y. Playford, T. F. Whale, B. J. Murray, M. G. Tucker and C. G. Salzmann, Analysis of stacking disorder in ice I using pair distribution functions, Journal of Appied Crystallography. 51 (2018) 1211-1220. [Back]
  93. L. Kranabetter, P. Martini, N. Gitzl, M. Kuhn, F. Saleem, B. Rasul, M. M. Darian, E. Jabbour, A.Maalouf, I. Sukuba, A. Kaiser, M. Goulart, D. K. Böhme and P. Scheier, Uptake and accommodation of water clusters by adamantane clusters in helium droplets: interplay between magic number clusters, Physical Chemistry Chemical Physics, (2018) Article in press, doi: 10.1039/c8cp02207k. [Back]
  94. K. Yasui, T. Tuziuti and W. Kanematsu, Mysteries of bulk nanobubbles (ultrafine bubbles); stability and radical formation, Ultrasonics Sonochemistry, 48 (2018) 259-266. [Back]
  95. A. V. Onufriev and S. Izadi, Water models for biomolecular simulations, Wiley Interdisciplinary Reviews: Computational Molecular Science, (2017) e1347. doi: 10.1002/wcms.1347. [Back]
  96. H. P. Veluswamy, A. Kumar, Y. Seo, J. D. Lee and P. Linga, A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates, Applied Energy, 216 (2018) 262-285. [Back]
  97. A. Hudait, D. R. Moberg, Y. Qiu, N. Odendahl, F. Paesani and Va. Molinero, Preordering of water is not needed for ice recognition by hyperactive antifreeze proteins, Proceedings of the National Academy of Sciences, (2018) Article in press, doi: 10.1073/pnas.1806996115; S. M. Marks and A. J. Patel, Antifreeze protein hydration waters: Unstructured unless bound to ice, Proceedings of the National Academy of Sciences, (2018) Article in press, doi:
    10.1073/pnas.1810812115. [Back]
  98. Q. Cao and R. R. Netz, Anomalous electrokinetics at hydrophobic surfaces: Effects of ion specificity and interfacial water structure, Electrochimica Acta, 259 (2018) 1011-1020. [Back]
  99. C. Hölzl and D. Horinek, Pressure increases the ice-like order of water at hydrophobic interfaces, Physical Chemistry Chemical Physics, (2018) Article in press, doi: 10.1039/c8cp03057j. [Back]
  100. H. Shweta and S. Sen, Dynamics of water and ions around DNA. What is so special about them? Journal of Biosciences, 43 (2018). 499-518. [Back]
  101. [Back to Top to top of page]


Home | Site Index | Site Map | Search | LSBU | Top

 

This page was established in 2018 and last updated by Martin Chaplin on 5 November, 2018


Creative Commons License
This work is licensed under a Creative Commons Attribution
-Noncommercial-No Derivative Works 2.0 UK: England & Wales License