Water site headerMasthead Island, Great Barrier Reef Print-me keygo to Water Visitor Book contributions
 Go to my page Water Structure and Science

Water Structure and Science, References 3601- 3700

  1. H. Zhu, Y. Wang, Y. Fan, J. Xu and C. Yang, Structure and transport properties of water and hydrated
    ions in nano-confined channels, Advanced Theory and Simulations, (2019) 1900016, doi: 10.1002/adts.201900016. [Back]
  2. Y. Qiu, A. Hudait and V. Molinero, How do size and aggregation of ice-binding proteins control their ice nucleation efficiency, Journal of the American Chemical Society, (2019) Article in press, doi: 10.1021/jacs.9b01854. [Back]
  3. C. Päslack, J. C. Smith, M. Heyden and L. V. Schäfer, Hydration-mediated stiffening of collective membrane dynamics by cholesterol, Physical Chemistry Chemical Physics, 21 (2019) Article in press, doi: 10.1039/c9cp01431d. [Back]
  4. M. Millot, F. Coppari, J. R. Rygg, A. C. Barrios, S. Hamel, D. C. Swift and J. H. Eggert, Nanosecond X-ray diffraction of shock-compressed superionic water ice, Nature, 569 (2019) 251-255; J. Sokol, Black, hot ice may be nature’s most common form of water, Quanta Magazine, May 8 (2019); T. Wogan, New form of superionic ice made, Chemistry World, 16 (6) (2019) 45. [Back, 2, 3]
  5. C. P. Berlinguette, Y.-M. Chiang, J. N. Munday, T. Schenkel, D. K. Fork, R. Koningstein and M. D. Trevithick, Revisiting the cold case of cold fusion Nature, 569 (2019) doi: 10.1038/s41586-019-1256-6; E. Gibney, Google revives controversial cold-fusion experiments, Nature, 569 (2019) 611; P.Ball, Lessons from cold fusion, 30 years on, Nature, 569 (2019) 601. [Back]
  6. C. A. Tulk, J. J. Molaison, A. R. Makhluf, C. E. Manning and D. D. Klug, Absence of amorphous forms when ice is compressed at low temperature, Nature, 569 (2019) 542-545; J. S. Tse, A twist in the tale of the structure of ice Nature, 569 (2019) 495-496. [Back]
  7. L. G. M. Pettersson, A two-state picture of water and the funnel of life, arxiv.org/abs/1905.02757, Modern Problems of the Physics of Liquid Systems - Selected Reviews from the 8th International Conference Physics of Liquid Matter: Modern Problems, Kiev, Ukraine, May 18-22, 2018. [Back, 2, 3]
  8. C. G. Salzmann, Z. Sharif, C. L. Bull, S. T. Bramwell, A. Rosu-Finsen and N. P. Funnell, Ammonium fluoride as a hydrogen-disordering agent for ice, arxiv.org/ftp/arxiv/papers/1905/1905.04763. [Back]
  9. N. F. Bunkin, A. V. Shkirin, N. V. Penkov, S. N. Chirikov, P. S. Ignatiev, and V. A. Kozlov, The physical nature of mesoscopic inhomogeneities in highly diluted aqueous suspensions of protein particles, Physics of Wave Phenomena, 27 (2019) 102-112. [Back]
  10. Z. Guo, X. Wang and X. Zhang, On the stability of surface nanobubbles without contact line pinning, Langmuir, (2019) Article in press, doi: 10.1021/acs.langmuir.9b00772. [Back]
  11. P. Irajizad, S. Nazifi and H. Ghasemi, Icephobic surfaces: Definition and figures of merit, Advances in Colloid and Interface Science, (2019) Article in Press, doi: 10.1016/j.cis.2019.04.005. [Back]
  12. A. Gismondi, A. D’Agostino, L. Canuti, G. Di Marco, F. Basoli and A. Canini, Starch granules: a data collection of 40 food species, Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, (2019) doi: 10.1080/11263504.2018.1473523. [Back]
  13. H. Du and E. Amstad, Water: How does it influence the CaCO3 formation? Angewandte Chemie International Edition, (2019) Article in press, doi: 10.1002/anie.201903662. [Back]
  14. S. Fujii, H. Cho, Y. Hashikawa, T. Nishino, Y. Murata and M. Kiguchi, Tuneable single-molecule electronic conductance of C60 by encapsulation, Physical Chemistry Chemical Physics, (2019) Article in press, doi: 10.1039/c9cp02469g. [Back]
  15. Y. S. Blanco, O. Topel, E. G. Bajnóczi, J. Werner, O, Björneholm and I. Persson, Chemical equilibria of aqueous ammonium–carboxylate systems in aqueous bulk, close to and at the water–air interface, Physical Chemistry Chemical Physics , (2019) Article in press, doi: 10.1039/c9cp02449b. [Back]
  16. M. Javanainen and H. Martinez-Seara, Rapid diffusion of cholesterol along polyunsaturated membranes via deep dives, Physical Chemistry Chemical Physics, (2019) Article in press, doi: 10.1039/c9cp02022e. [Back]
  17. K. Sasaki, I. Popov and Yuri Feldman, Water in the hydrated protein powders: Dynamic and structure, Journal of Chemical Physics , 150 (2019) 204504. [Back]
  18. P. Banerjee and B. Bagchi, Ions’ motion in water, Journal of Chemical Physics, 150 (2019) 190901. [Back, 2]
  19. B. Nordén, Role of water for life, Molecular Fronteirs Journal, 3 (2019) 1-17, doi: 10.1142/S2529732519400017 [Back, 2]
  20. K. L. Ngai, Interpretation of the GHz to THz dielectric relaxation dynamics of water in the framework of the Coupling Model, Journal of Molecular Liquids, 253 (2018) 113-118. [Back]
  21. S. Ke, W. Xiao, N. Quan, Y. Dong, L. Zhang and J. Hu, Formation and stability of bulk nanobubbles in different solutions, Langmuir, (2019) Article in press, doi: 10.1021/acs.langmuir.9b00144. [Back]
  22. D. Tao, A. Sobhy and L. Li, Nanobubble effects on hydrodynamic interactions between particles and bubbles, Powder Technology, (2019) Article in press, doi: 10.1016/j.powtec.2019.02.024. [Back]
  23. T. Yagasaki, M. Matsumoto and H. Tanaka, Liquid-liquid separation of aqueous solutions: A molecular dynamics study, Journal of Chemical Physics, 150 (2019) 214506. [Back, 2]
  24. T. Kikutsuji, K. Kim and N. Matubayasi, Diffusion dynamics of supercooled water modeled with the cage-jump motion and hydrogen-bond rearrangement Journal of Chemical Physics, 150 (2019) 204502. [Back]
  25. H. Pathak, A. Späh, K. H. Kim, I. Tsironi, D. Mariedahl, M. Blanco, S. Huotari, V. Honkimäki and A. Nilsson, Intermediate range O–O correlations in supercooled water down to 235 K, Journal of Chemical Physics, 150 (2019) 224506. [Back, 2]  [Back to Top to top of page]
  26. Y. Suzuki, Effect of OH groups on the polyamorphic transition of polyol aqueous solutions, Journal of Chemical Physics, 150 (2019) 224508. [Back]
  27. F. Martelli, Unravelling the contribution of local structures to the anomalies of water: The synergistic action of several factors, Journal of Chemical Physics, 150 (2019) 094506. [Back]
  28. J. C. Benavides-Parra, D. Jacinto-Méndez, G. Brotons and M. D. Carbajal-Tinoco, Brownian motion near a liquid-gas interface, Journal of Chemical Physics, 145 (2016) 114902. [Back]
  29. Y. Shi, Z. Zhang, W. Jiang, R. Wang and Z. Wang, Infrared spectral-shift induced by hydrogen bonding cooperativity in cyclic and prismatic water clusters, Journal of Molecular Liquids, 286 (2019) 110940. [Back]
  30. X. Hu, J. Zuo, C. Xie, R. Dawes, H. Guo and D. Xie, An ab initio based full-dimensional potential energy surface for OH + O2 = HO3 and low-lying vibrational levels of HO3, Physical Chemistry Chemical Physics, (2019) Article in press, doi: 10.1039/c9cp02206f. [Back]
  31. P. S. Gil and D. J. Lacks, Humidity transforms immobile surface charges into mobile charges during triboelectric charging, Physical Chemistry Chemical Physics, (2019) Article in press, doi: 10.1039/c9cp02398d. [Back]
  32. M. Catti, L. del Rosso, L. Ulivi, M. Celli, F. Grazzi and T. C. Hansen, Ne- and O2-filled ice XVII: a neutron diffraction study, Physical Chemistry Chemical Physics, (2019) Article in press, doi: 10.1039/c9cp02218j. [Back]
  33. F. Foglia, R. Hazael, F. Meersman, M. C. Wilding, V. G. Sakai, S. Rogers, L. E. Bove, M. M. Koza, M. Moulin, M. Haertlein, V. T. Forsyth and P. F. McMillan, In vivo water dynamics in Shewanella oneidensis bacteria at high pressure, Scientific Reports, 9 (2019) 8716. [Back]
  34. M. Havenith-Newen, G. Schwaab and F. Sebastiani, Ion hydration and ion pairing as probed by THz spectroscopy, Angewandte Chemie International Edition, (2019) Article in press, doi: 10.1002/anie.201805261. [Back]
  35. V. Teboul and A. P. Kerasidou, Specific properties of supercooled water in light of water anomalies, Molecular Simulation (2019) Article in press, doi: 10.1080/08927022.2018.1505045. [Back]
  36. D, Mani, R. Pérez de Tudela, R. Schwan, N. Pal, S. Körning, H. Forbert, B. Redlich, A. F. G. van der Meer, G. Schwaab, D. Marx and M. Havenith, Acid solvation versus dissociation at “stardust conditions”: Reaction sequence matters, Science Advances, 5 (2019) eaav8179. [Back]
  37. L, Zhou, T, Mernagh and C, Le Losq, Observation of the chemical structure of water up to the critical point by Raman spectroscopic analysis of fluid inclusions, Journal of Physical Chemistry. B, (2019) Article in press, doi: 10.1021/acs.jpcb.9b02129. [Back]
  38. R. Stahlberg, H. Yoo and G. H. Pollack, Origin of the infrared emission peak in freezing water, Indian Journal of Physics, (2018) Article in press, doi: 10.1007/s12648-018-1265-6. [Back]
  39. O. Teschke, J. R. de Castro, W. E. Gomes and D. M. Soares, Hydrated excess protons and their local hydrogen bond transport network as measured by translational, librational, and vibrational frequencies, Journal of Chemical Physics, 150 (2019) 234501. [Back]
  40. G. Sharma, S. Sharma, A. Kumar, A. H. Al-Muhtaseb, M.. Naushad, A. A. Ghfar, G. T. Mola and F. J. Stadler, Guar gum and its composites as potential materials for diverse applications: A Review, Carbohydrate Polymers, (2018) Article in press, doi: 10.1016/j.carbpol.2018.07.053. [Back]
  41. Y. Wang, F. Li, Z. Li, C. Sun, S. Wang and Z. Mena, Raman spectra study hydrogen bonds network in ice Ih with cooling, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 220 (2019) 117131. [Back]
  42. J. Muncan and R. Tsenkova, Aquaphotomics—From innovative knowledge to integrative platform in science and technology, Molecules, 24 (2019) 2742; R. Tsenkova, J. Muncan, B. Pollner and Z. Kovacs, Essentials of aquaphotomics and its chemometrics approaches. Frontiers in Chemistry, 6 (2018) 363. [Back]
  43. J. Rönnols, O, Engström, U, Schnupf, E, Säwén, J, W. Brady and G. Widmalm, Interresidual hydrogen bonding in carbohydrates unraveled by NMR spectroscopy and molecular dynamics simulations, ChemBioChem, (2019) Article in press, doi: 10.1002/cbic.201900301. [Back]
  44. C.-L. Zhao, D.-X. Zhao, C.-C. Bei, X.-N. Meng, S. Li and Z.-Z. Yang, Seven-site effective pair potential for simulating liquid water, Journal of Physical Chemistry . B, 123 (2019) 4594-4603. [Back]
  45. L. Zanetti-Polzi, A. D. Biswas, S. D. Galdo, V. Barone and I. Daidone, Hydration shell of antifreeze proteins: Unveiling the role of non- ice-bindingsurfaces, Journal of Physical Chemistry . B, (2019) Article in press, doi:10.1021/acs.jpcb.9b06375. [Back]
  46. S. Di Fonzo, B. Bellich, A. Gamini, N. Quadri and A. Cesàro, PEG hydration and conformation in aqueous solution: Hints to macromolecular crowding, Polymer, 175 (2019) 57-64. [Back]
  47. Y. Suzuki, Y. Nojima, and S.Yamaguchi, Vibrational coupling at the topmost surface of water revealed by
    heterodyne-detected sum frequency generation spectroscopy, Journal of Physical Chemistry Letters, 8 (2017) 1396-1401. [Back]
  48. R. Schwan, C. Qu, D. Mani, N. Pal, L. van der Meer, B.Redlich, C. Leforestier, J. M. Bowman and M. Havenith, Observation of the low frequency spectrum of water dimer as a sensitive test of the water dimer potential and dipole moment surfaces, Angewandte Chemie International Edition, (2019) Article in press, doi: 10.1002/anie.201906048. [Back]
  49. T. Jollans and M.Orrit, Explosive, oscillatory, and Leidenfrost boiling at the nanoscale, Physical Review E, 99 (2019) 063110. [Back]
  50. S. I. Koshoridze and Yu. K. Levin, The possibility of formation of surface and bulk nanobubbles, Nanoscience and Technology: An International Journal, 10 (2019) 67-77. [Back]  [Back to Top to top of page]
  51. P. Letellier and M. Turmine, Bubble solution description by nonextensive Thermodynamics. Pressure effect, ChemPhysChem, (2019) Article in press, doi: 10.1002/cphc.201900412. [Back]
  52. I. Pereiro, A. F. Khartchenko, L. Petrini and G. V. Kaigala, Nip the bubble in the bud: a guide to avoid gas nucleation in microfluidics, Lab on a Chip, 19 (2019) 2296-2314. [Back]
  53. J. K. Lee, D. Samanta, H. G. Nam and R. N. Zare, Micrometer-sized water droplets induce spontaneous reduction, Journal of the American Chemical Society, 141 (2019) 10585-10589. [Back , 2, 3]
  54. D. Ben-Amotz, Hydration-shell vibrational spectroscopy, Journal of the American Chemical Society, 141 (2019) 10569-10580; D. Ben-Amotz, Correction to “Hydration-Shell Vibrational Spectroscopy” J. Am. Chem. Soc. 2019, 141, 10569-10580, Journal of the American Chemical Society, 141 (2019) 14047. [Back]
  55. S. Imoto and D. Marx, Pressure response of the THz spectrum of bulk liquid water revealed by intermolecular instantaneous normal mode analysis, Journal of Chemical Physics, 150 (2019) 084502. [Back]
  56. P. K. Gupta, P. Schienbein, J. Daru and D. Marx, THz spectra of microsolvated ions: Do they reveal bulk solvation properties? Journal of Physical Chemistry Letters, (2019) Article in press, doi: 10.1021/acs.jpclett.8b03188. [Back]
  57. M. Murri, R. L. Smith, K. McColl, M. Hart, M. Alvaro, A. P . Jones, P. Németh, C. G. Salzmann, F. Corà, M. C. Domeneghetti, F. Nestola, N. V. Sobolev, S. A. Vishnevsky, A. M. Logvinova and P. F. McMillan, Quantifying hexagonal stacking in diamond, Scientific Reports, 9 (2019) 10334. [Back]
  58. E. Székely and A. Baranyaim, Local order in water: The fifth neighbor, Journal of Molecular Liquids, 232 (2017) 304–309. [Back]
  59. E. T. Perrier, Hydration for health: So what? Ten advances in recent hydration history, Annals of Nutrition & Metabolism, 74(suppl 3) (2019) 4-10. [Back]
  60. F. Caupin and M. A. Anisimov, Thermodynamics of supercooled and stretched water: Unifying two-structure description and liquid-vapor spinodal, Journal of Chemical Physics, 151 (2019) 034503. [Back, 2]
  61. G. Camisasca, D. Schlesinger, I. Zhovtobriukh, G. Pitsevich and L. G. M. Pettersson, A proposal for the structure of high- and low-density fluctuations in liquid water, Journal of Chemical Physics, 151 (2019) 034508. [Back]
  62. B. Wang, M. Xin, X. Dai, R. Song, Y. Meng, J.Han, W. Jiang, Z. Wang and R. Zhang, Electronic delocalization in small water rings, Physical Chemistry Chemical Physics, 17 (2015) 2987-2990. [Back]
  63. P. G. Brewer, E. T. Peltzer and P. M. Walz, How much H2O is there in the ocean? The structure of water in sea water, Journal of Geophysical Research: Oceans, 124 (2019) 212-226. [Back]
  64. D. Rozen‐Rechels, A. Dupoué, O. Lourdais, S. Chamaillé‐Jammes, S. Meylan, J. Clobert and J.‐F. Le Galliard, When water interacts with temperature: Ecological and evolutionary implications of thermo‐hydroregulation in terrestrial ectotherms, Ecology and Evolution, (2019) 1-15. [Back]
  65. B. A. Rogers, K. B. Rembert, M. F. Poyton, H. I. Okur, A. R. Kale, T. Yang, J. Zhang and P.S. Cremer, A stepwise mechanism for aqueous two-phase system formation in concentrated antibody solutions, Proceedings of the National Academy of Sciences, (2019) Article in press, doi: 10.1073/pnas.1900886116. [Back]
  66. H. I. Okur, O. B. Tarun and S. Roke , The chemistry of lipid membranes - from models to living systems: A perspective of hydration, surface potential, curvature, confinement and heterogeneity, Proceedings of the National Academy of Sciences, (2019) Article in press, doi: 10.1021/jacs.9b02820. [Back]
  67. J. Grabowska, Why is the cubic structure preferred in newly formed ice?, Physical Chemistry Chemical Physics, (2019) Article in press, doi: 10.1039/c9cp03705e. [Back, 2]
  68. J. Jeon, C.-S. Hsieh, Y.i Nagata, M. Bonn and M. Cho, Hydrogen bonding and vibrational energy relaxation of interfacial water: A full DFT molecular dynamics simulation, Journal of Chemical Physics, 147 (2017) 044707. [Back]
  69. C. Liang, J. Jeon and M. Cho, Ab initio modeling of the vibrational sum-frequency generation spectrum of interfacial water, Journal of Physical Chemistry Letters, (2019) Article in press, doi: 10.1021/acs.jpclett.9b00291. [Back]
  70. J. Niskanen, M. Fondell, C. J. Sahle, S. Eckert, R. M. Jay, K.Gilmore, A. Pietzsch, M. Dantz, X. Lu, D. E. McNally, T. Schmitt, V. V. da Cruz, V. Kimberg, F. Gel’mukhanov and A. Föhlisch, Compatibility of quantitative X-ray spectroscopy with continuous distribution models of water at ambient conditions, Proceedings of the National Academy of Sciences, 116 (2019) 4058-4063; but see L. G. M. Pettersson, Y. Harada and A.Nilsson, Do X-ray spectroscopies provide evidence for continuous distribution models of water at ambient conditions? Proceedings of the National Academy of Sciences, 116 (2019) 17156-17157; and the reply J. Niskanen, M. Fondell, C. J. Sahle, S. Eckert, R. M. Jay, K.Gilmore, A. Pietzsch, M. Dantz, X. Lu, D. E. McNally, T. Schmitt, V. V. da Cruz, V. Kimberg, F. Gel’mukhanov and A. Föhlisch, Reply to Pettersson et al, Why X-ray spectral features are compatible to continuous distribution models in ambient water, Proceedings of the National Academy of Sciences, 116 (2019)  17158-17159. [Back]
  71. G. Camisasca , H. Pathak , K. T. Wikfeldt and L. G. M. Pettersson, Radial distribution functions of water: Models vs experiments, Journal of Chemical Physics, 151 (2019) 044502. [Back]
  72. C. G. Salzmann, Water and methane stay together at extreme pressures, Proceedings of the National Academy of Sciences, (2019) Article in press, doi: 10.1073/pnas.1911390116; S. Schaack, U. Ranieri, P. Depondt, R. Gaal, W. F. Kuhs, P. Gillet, F. Finocchi and L. E. Bove, Observation of methane filled hexagonal ice stable up to 150 GPa, Proceedings of the National Academy of Sciences, 116 (2019) 16204-16209. [Back]
  73. C. I. Drexler, T. C. Miller, B. A. Rogers, Y. C. Li, C. A. Daly, Jr., T. Yang, S. A. Corcelli,and P. S. Cremer, Counter cations affect transport in aqueous hydroxide solutions with ion specificity, Journal of the American Chemical Society, (2019) Article in press, doi: 10.1021/jacs.8b13458. [Back]
  74. C. A. Daly, L. M. Streacker, Y. Sun, S. R. Pattenaude, A. A. Hassanali, P. B. Petersen, S. A. Corcelli and D. Ben-Amotz, Decomposition of the experimental raman and infrared spectra of acidic water into proton, special pair, and counter-ion contributions, Journal of Physical Chemistry Letters, 8 (2017) 5246-5252. [Back]
  75. S. R Zukowski, P. D. Mitev, K. Hermansson and D. Ben-Amotz, CO2 Hydration shell structure and transformation, Journal of Physical Chemistry Letters, 8 (2017) 2971-2975. [Back]  [Back to Top to top of page]
  76. Y. Wang, W. Zhu, K. Lin, L. Yuan, X. Zhou and S. Liua, Ratiometric detection of Raman hydration shell spectra, Journal of Raman Spectroscopy, 47 (2016) 1231-1238. [Back]
  77. S. F. Ahmadi, S. Nath, C. M. Kingett, P. Yue and J. B. Boreyko, How soap bubbles freeze, Nature Communications, 10 (2019) 2531; N. Withers, Physics behind freezing bubbles' hypnotic ice crystal dance revealed, Chemistry World, 16(8) (2019) 30. [Back]
  78. M. Yu.. Kulikov, A. M. Feigin and O. Schrems, H2O2 photoproduction inside H2O and H2O:O2 ices at 20-140 K, Scientific Reports, 9 (2019) 11375. [Back]
  79. T. M. Chang, R. J. Cooper and E. R. Williams, Locating protonated amines in clathrates, Journal of the American Chemical Society, 135 (2013) 14821-14830. [Back]
  80. G. Olofson, Thermodynamic quantities for the dissociation of the ammonium ion and for the ionization of aqueous ammonia over a wide temperature range, Journal of Chemical Thermodynamics, 7 (1975) 507-514. [Back]
  81. K. Emerson, , R. C. Russo, R. E. Lund and R. V. Thurston, Aqueous ammonia equilibrium calculations: Effect of pH and temperature, Journal of the Fisheries Research Board of Canada, 32 (1975) 2379-2383, doi: 10.1139/f75-274. [Back]
  82. E. Sälli, T. Salmi and L. Halonen, Computational high-frequency overtone spectra of the water-ammonia complex, Journal of Physical Chemistry. A, 115 (2011) 11594-11605. [Back]
  83. V. N. Robinson, M. Marqués, Y. Wang, Y. Ma and A. Hermann, Novel phases in ammonia-water mixtures under pressure, Journal of Chemical Physics, 149 (2018) 234501; J. S. Loveday and R. J. Nelmes, The ammonia hydrates - model mixed-hydrogen-bonded systems, High Pressure Research, 24 (2004) 45-55; J. Leliwa-Kopystyński, M. Maruyama and T. Nakajima, The water–ammonia phase diagram up to 300 MPa: Application to icy satellites, Icarus, 159 (2002) 518-528. [Back]
  84. R. Tillner-Roth and D. G. Friend, A Helmholtz Free Energy formulation of the thermodynamic properties of the mixture (Water+ Ammonia), Journal of Physical Chemistry Reference Data, 27 (1998) 63-96. [Back]
  85. H. W. Xiang, Vapor pressures, critical parameters, boiling points, and triple points of ammonia and trideutero-ammonia, Journal of Physical Chemistry Reference Data, 33 (2004) 1005-1011. [Back]
  86. A. M. Halpern, B. R. Ramachandran and E. D. Glendening, The inversion potential of ammonia: An intrinsic
    reaction coordinate calculation for student investigation, Journal of Chemical Education, 84 (2007) 1067-1072; A. M. Halpern, B. R. Ramachandran and E. D. Glendening, Correction to "The inversion potential of ammonia: An intrinsic reaction coordinate calculation for student investigation", Journal of Chemical Education, 96 (2019) 1536. [Back]
  87. D. Simonelli, S. Baldelli and M. J. Shultz, Ammonia–water complexes on the surface of aqueous solutions observed with sum frequency generation, Chemical Physics Letters, 298 (1998) 400-404. [Back]
  88. M. Ekimova, W. Quevedo, L. Szyc, M. Iannuzzi, P. Wernet, M. Odelius and E. T. J. Nibbering, Aqueous solvation of ammonia and ammonium: Probing hydrogen bond motifs with FT-IR and soft-X-Ray spectroscopy, Journal of the American Chemical Society, 139 (2017) 12773-12783. [Back]
  89. Q. Wang, H. Zhao, N. Qi, Y. Qin, X. Zhang and Y. Li, Generation and stability of size-adjustable bulk nanobubbles based on periodic pressure change, Scientific Reports, 9 (2019) 1118. [Back]
  90. A. Azevedo, H. Oliveira and J. Rubio, Bulk nanobubbles in the mineral and environmental areas: Updating research and applications, Advances in Colloid and Interface Science, (2019) Article in press, doi: 10.1016/j.cis.2019.101992. [Back]
  91. J. De Poorter, An improved formulation of Jaccard's theory of the electric properties of ice, The European Physical Journal B, 92 (2019) 157. [Back]
  92. J. Bruyn, Personal communication, (2019). [Back]
  93. C. M. Galanakis (Ed.) Dietary Fiber: Properties, Recovery, and Applications, (2019) Academic Press, Elsevier Inc. ISBN 978-0-12-816495-2. [Back]
  94. M. M. Islam K. Kobayashi S.‐I. Kidokoro and Y. Kuroda, Hydrophobic surface residues can stabilize a protein through improved water–protein interactions, The FEBS Journal, (2019) Article in press, doi: 10.1111/febs.14941. [Back]
  95. F. Mallamace, C. Corsaro, E. Fazio, S.-H. Chen and D. Mallamace, A study of the hydrogen bonds effect on the water density and the liquid-liquid transition, Science China Physics, Mechanics & Astronomy, (2019) Article in press, doi: 10.1007/s11433-018-9397-2. [Back]
  96. C. Andreani, C. Corsaro, D. Mallamace, G.Romanell, R. Senesi and F. Mallamace, The onset of the tetrabonded structure in liquid water, Science China Physics, Mechanics & Astronomy, 62 (2019) 107008. [Back, 2, 3]
  97. B. Journaux, J. M. Brown, A. Pakhomova, I. E. Collings, S. Petitgirard, P. Espinoza, J. Ott, F. Cova, G. Garbarino and M. Hanfland, Gibbs energy of ices III, V and VI: wholistic thermodynamics and elasticity of the water phase diagram to 2300 MPa, (2019) arXiv:1907.09598 [physics.chem-ph]. [Back, 2, 3]
  98. A. A. Voityuk and S. F. Vyboishchikov, A simple COSMO-based method for calculation of hydration energies of neutral molecules†, Physical Chemistry Chemical Physics , (2019) Article in press, doi: 10.1039/c9cp03010g. [Back]
  99. Z. Zhang and W. Kob, On the structure of liquids: More order than expected, (2019) arXiv:1904.12447v1 [cond-mat.dis-nn]. [Back]
  100. D. Li, L. Qi, Y. Liu, B. Bhushan, J. Gu and J. Dong, Study on the formation and properties of trapped nanobubbles and surface nanobubbles by using spontaneous and temperature gifference methods, Langmuir, (2019) Article in press, doi: 10.1021/acs.langmuir.9b02058. [Back] [Back to Top to top of page]

Home | Site Index | Site Map | Search | LSBU | Top

This page was established in 2019 and last updated by Martin Chaplin on 7 November, 2019


Creative Commons License
This work is licensed under a Creative Commons Attribution
-Noncommercial-No Derivative Works 2.0 UK: England & Wales License