Water site headerMasthead Island, Great Barrier Reef Print-me keygo to Water Visitor Book contributions
 Go to my page Water Structure and Science

Water Structure and Science, References 3701- 3800

 

  1. M. R. Pradhan, M. N. Nguyen, S. Kannan, S. J. Fox, C. K. Kwoh, D.P. Lane and C. S. Verma, Characterization of hydration properties in structural ensembles of biomolecules, Journal of Chemical Information and Modeling, 59 (2019) 3316-3329. [Back]
  2. D. Mallamace, S.-H. Chen, C. Corsaro, E. Fazio, F. Mallamace and H. E. Stanley, Hydrophilic and hydrophobic competition in water-methanol solutions, Science China Physics, Mechanics & Astronomy, 62 (2019) 107003. [Back]
  3. (a) A. D. Wexler, S. Drusová, J. Woisetschläger and E. C. Fuchs, Non-equilibrium thermodynamics and collective vibrational modes of liquid water in an inhomogeneous electric field, Physical Chemistry Chemical Physics, 18 (2016) 16281; (b) A. D. Wexler, E. C. Fuchs, J. Woisetschläger and G. Vitiello, Electrically induced liquid–liquid phase transition in water at room temperature, Physical Chemistry Chemical Physics , (2019) Article in press, doi: 10.1039/c9cp03192h. [Back]
  4. G. Cassone, J. Sponer, S. Trusso and F. Saija, Ab initio spectroscopy of water under electric fields, Physical Chemistry Chemical Physics , (2019) Article in press, doi: 10.1039/c9cp03101d. [Back]
  5. J. Tan, J. Zhang, C. Li, Y. Luo and S. Ye, Ultrafast energy relaxation dynamics of amide I vibrations coupled with protein-bound water molecules, Nature Communications, 10 (2019) 1010. [Back]
  6. V. Pattni and M. Heyden, Pressure effects on protein hydration water thermodynamics, Journal of Physical Chemistry B, 123 (2019) 6014-6022. [Back]
  7. S. M. Pershin, A. F. Bunkin, M. Ya. Grishin, V. N. Lednev, A. N. Fedorov and N. P. Palmina, Bimodal dependence of light scattering/fluctuations on the concentration of aqueous solutions,Physics of Wave Phenomena, 24 (2016) 41-47; N. F. Bunkin, G. A. Lyakhov, A. V. Shkirin, P. S. Ignatiev, A. V. Kobelev, N. V. Penkov, and E. E. Fesenko, Mesodroplet heterogeneity of low-concentration aqueous solutions of polar organic compounds, Physics of Wave Phenomena, 27 (2019) 91-101. [Back]
  8. M. Baity-Jesi , E. Calore, A. Cruz, L. A. Fernandez, J. M. Gil-Narvión, A. Gordillo-Guerrero, D. Iñiguez, A. Lasanta, A. Maiorano, E. Marinari, V. Martin-Mayor, J. Moreno-Gordo, A. M. Sudupe, D. Navarro, G. Parisi, S. Perez-Gaviro, F. Ricci-Tersenghi, J. J. Ruiz-Lorenzo, S. F. Schifano, B. Seoane, A. Tarancón, R. Tripiccione and David Yllanes, The Mpemba effect in spin glasses is a persistent memory effect, Proceedings of the National Academy of Sciences, 116 (2019) 15350-15355. [Back]
  9. M. Alheshibri, M. Jehannin, V. A. Coleman and V. S. J. Craig, Does gas supersaturation by a chemical reaction produce bulk nanobubbles?, Journal of Colloid and Interface Science, 554 (2019) 388-395; M. Alheshibri and V. S. J. Craig. Generation of nanoparticles upon mixing ethanol and water; Nanobubbles or not? Journal of Colloid and Interface Science,  542 (2019) 136-143. [Back]
  10. J. L. Demangeat, Towards a rational insight into the paradox of homeopathy, Advances in Complementary & Alternative Medicine, 2 (2018) ACAM.000534. [Back, 2]
  11. S. D. Klein, S. Würtenberger, U. Wolf, S. Baumgartner and A. Tournier, Physicochemical investigations of homeopathic preparations: A systematic review and bibliometric analysis—Part 1, The Journal of Alternative and Complementary Medicine, 24 (2018) 409-421; A. Tournier, S. D. Klein, S. Würtenberger, U. Wolf and S. Baumgartner, Physicochemical investigations of homeopathic preparations: A systematic review and bibliometric analysis—Part 2, The Journal of Alternative and Complementary Medicine , (2019) Article in press, doi: 10.1089/acm.2019.0064. [Back, 2]
  12. P. Bellavite and M. Marzotto, Comments on the retraction by PLoS ONE of a laboratory study on Arnica montana, Homeopathy, (2019) Article in press, doi: 10.1055/s-0039-1693969. [Back]
  13. I. Bono, E. Del Giudice, L. Gamberale and M. Henry, Emergence of the coherent structure of liquid water, Water, 4 (2012) 510-532. [Back]
  14. C. Messori, The super-coherent state of biological water. Open Access Library Journal , 6 (2019) e5236; doi:10.4236/oalib.1105236. [Back]
  15. P. E. Theodorakis and Z. Che, Surface nanobubbles: Theory, simulation, and experiment. A review, Advances in Colloid and Interface Science, (2019) Article in press, doi: 10.1016/j.cis.2019.101995; arXiv:1909.02658v1 [cond-mat.soft] 2 Sep 2019. [Back]
  16. I. Zhovtobriukh, B. J. C. Cabral, C. Corsaro, D. Mallamace, and L. G. M. Pettersson, Liquid water structure from X-ray absorption and emission, NMR shielding and X-ray diffraction, Science China Physics, Mechanics & Astronomy,62 (2019) 107010. [Back]
  17. J. N. Meegoda, S. A. Hewage and J.H. Batagoda, Stability of nanobubbles, Environmental Engineering Science, 35 (2018) doi: 10.1089/ees.2018.0203. [Back]
  18. S. C. C. van der Lubbe, F. Zaccaria, X. Sun and C. F. Guerra, Secondary electrostatic interaction model revised: Prediction comes mainly from measuring charge accumulation in hydrogen-bonded monomers, Journal of the American Chemical Society, 141 (2019) 4878-4885. [Back]
  19. S. C. C. van der Lubbe and C. F. Guerra, The nature of hydrogen bonds: A delineation of the role of different energy components on hydrogen bond strengths and lengths, Chemistry Asian Journal, 14 (2019) 2760-2769. [Back]
  20. K. Yamazoe, J. Miyawaki, H. Niwa, A. Nilsson and Y. Harada, Measurements of ultrafast dissociation in resonant inelastic x-ray scattering of water, Journal of Chemical Physics, 150 (2019) 204201. [Back]
  21. K.-Y. Chiang, L. Dalstein and Y.-C. Wen, Intrinsic pH of water/vapor interface revealed by ioninduced water alignment, arXiv:1908.09433v1 (2019) [physics.chem-ph]. [Back]
  22. B. P. Chaplin Critical review of electrochemical advanced oxidation processes for water treatment applications, Environmental Science: Processes & Impacts, 16 (2014) 1182-1203. [Back]
  23. Q. Li, Xi. Li, S. Yang, P. Gu and G. Yang, Structure, dynamics, and stability of water molecules during interfacial interaction with clay minerals: Strong dependence on surface charges, ACS Omega , 4 (2019) 5932-5936, doi: 10.1021/acsomega.9b00401. [Back]
  24. W. Zhao, H. S. Huang, Q. L. Bi, Y. J. Xu and Y. Lu, One-dimensional water nanowires induced by electric fields, Physical Chemistry Chemical Physics, (2019) Article in press, doi: 10.1039/C9CP02788B. [Back, 2]
  25. S. Dasgupta, B. Rana and J. M. Herbert, Ab Initio nvestigation of the resonance Raman spectrum of the hydrated electron, Journal of Physical Chemistry B, (2019) Article in press, doi: 10.1021/acs.jpcb.9b04895; J. M. Herbert, Structure of the aqueous electron, Physical Chemistry Chemical Physics, (2019) Article in press, doi: 10.1039/c9cp04222a. [Back]  [Back to Top to top of page]
  26. N. Giovambattista , F. W. Starr and P. H. Poole, State variables for glasses: The case of amorphous ice
    Journal of Chemical Physics, 150 (2019) 224502. [Back]
  27. S. M. Pershin, V. N. Lednev and A. N. Fedorov, To the problem of the water transparency bandwidth (1.8-11.2 eV) and hydrogen bonds, Bulletin of the Lebedev Physics Institute, 45 (2018) 35-38; Original Russian text published in Kratkie Soobshcheniya po Fizike, 45 (2018) 3-9. [Back]
  28. A. Berger, G. Ciardi, D. Sidler, P. Hamm and A. Shalit, Impact of nuclear quantum effects on the structural inhomogeneity of liquid water, Proceedings of the National Academy of Sciences, 116 (2019) 2458-2463. [Back]
  29. A. Kholmanskiy and N. Zaytseva, Physically adequate approximations for abnormal temperature dependences of water characteristics, Journal of Molecular Liquids, 275 (2019) 741-748. [Back]
  30. K. Amann-Winkela, D. T. Bowron and T. Loerting, Structural differences between unannealed and expanded high-density amorphous ice based on isotope substitution neutron diffraction, Molecular Physics, (2019) Article in press, doi:10.1080/00268976.2019.1649487. [Back]
  31. H. Tanaka, H. Tong, R. Shi and J. Russo, Revealing key structural features hidden in liquids and glasses, Nature RevIews | Physics Technical Reviews, 1 (2019) 333-348. [Back]
  32. O. Andersson, P. H. B. B. Carvalho, Y.-J. Hsu and U. Häussermann, Transitions in pressure-amorphized clathrate hydrates akin to those of amorphous ices, Journal of Chemical Physics, 151 (2019) 014502. [Back]
  33. D. Fijan and M. Wilson, The interactions between thermodynamic anomalies, Journal of Chemical Physics, 151 (2019) 024502. [Back]
  34. F. Mallamace, C. Corsaro, D. Mallamace, E. Fazio and S.-H. Chen, Some considerations on the water polymorphism and the liquid-liquid transition by the density behavior in the liquid phase, Journal of Chemical Physics, 151 (2019) 044504. [Back]
  35. D. Keifer, Enthalpy and the second law of thermodynamics, Journal of Chemical Education, 96 (2019) 1407-1411. [Back]
  36. Y. Krüger, L. Mercury, A. Canizarès, D. Marti and P. Simon, Metastable phase equilibria in the ice II stability field. A Raman study of synthetic high-density water inclusions in quartz, Physical Chemistry Chemical Physics, (2019) Article in press, doi: 10.1039/c9cp03647d. [Back]
  37. J. Lentz and S. H. Garofalini, Role of the hydrogen bond lifetimes and rotations at the water/amorphous silica interface on proton transport, Physical Chemistry Chemical Physics, (2019) Article in press, doi: 10.1039/C9CP01994D. [Back]
  38. Prerna, R. Goswami, A. K. Metya, S. V. Shevkunov and J. K. Singh, Study of ice nucleation on silver iodide surface with defects, Molecular Physics, (2019) Article in press, doi: 10.1080/00268976.2019.1657599. [Back]
  39. J. Grabowska, A. Kuffel and J. Zielkiewicz, Role of the solvation water in remote interactions of hyperactive antifreeze proteins with the surface of ice, Journal of Physical Chemistry B, (2019) Article in press, doi: 10.1021/acs.jpcb.9b05664. [Back]
  40. F. M. McCubbin and J. J. Barnes, Origin and abundances of H2O in the terrestrial planets, Moon, and asteroids, Earth and Planetary Science Letters, 526 (2019) 115771. [Back]
  41. T. Egami and Y. Shinohara: Dynamics of water in real space and time, Molecular Physics, (2019) Article in press, doi: 10.1080/00268976.2019.1649488. [Back]
  42. H. Pathak, A. Späh, K. Amann-Winkel, F. Perakis, K. K. H. Kim and A. Nilsson, Temperature dependent anomalous fluctuations in water: shift of ≈1 kbar between experiment and classical force field simulations, Molecular Physics, (2019) Article in press, doi: 10.1080/00268976.2019.1649486. [Back]
  43. M. Antonelli and D. Donelli, Reinterpreting homoeopathy in the light of placebo effects tomanage patients who seek homoeopathic care: A systematic review, Health and Social Care Community. 27 (2019) 824-847; R. T. Mathie, Y. Y. Y. Fok, P. Viksveen, A. K. L. To and J. R.T. Davidson, Systematic review and meta-analysis of randomised, other-than-placebo controlled, trials of non-individualised homeopathic treatment, Homeopathy, 108 (2019): 088-1016. [Back]
  44. P. Enck and S. Klosterhalfen, Placebos and the placebo effect in drug trials, Handbook of Experimental Pharmacology, (2019) Springer Nature, doi: 10.1007/164_2019_269. [Back]
  45. I. Kirsch, The Emperor’s new drugs: Medication and placebo in the treatment of depression, in F. Benedetti et al. (eds.), Placebo, Handbookof Experimental Pharmacology, 225 (2014) pp 291-303, doi: 10.1007/978-3-662-44519-8_16. [Back]
  46. T. Jäger, S. Würtenberger and S. Baumgartner, Effects of homeopathic preparations of mercurius corrosivus on the growth rate of severely mercury-stressed duckweed Lemna gibba L., Homeopathy, 108 (2019) 128-138. [Back]
  47. G. Bracho, E. Varela, R. Fernández, B. Ordaz, N. Marzoa, J. Menéndez, L. García E. Gilling, R. Leyva, R. Rufín, R. de la Torre, R. L Solis, N. Batista, R. Borrero and C. Campa, Large-scale application of highly-diluted bacteria for Leptospirosis epidemic control, Homeopathy, 99 (2010) 156-166; G. Bracho and I. Golden, A brief history of homeoprophylaxis in Cuba, 2004–2014, Homoeopathic Links, 29 (2016) 128-134. [Back]
  48. M. Schaefer, C. Denke, R. Harke, N. Olk, M. Erkovan and S. Enge, Open-label placebos reduce test anxiety and improve self-management skills: A randomized-controlled trial, Scientific Reports, 9 (2019) 13317. [Back]
  49. J. Michl, M. Sega and C. Dellago, Phase stability of the ice XVII-based CO2 chiral hydrate from molecular dynamics simulations, Journal of Chemical Physics, 151 (2019) 104502. [Back]
  50. B. Massani, L. J. Conway, A. Hermann and J. Loveday, On a new nitrogen sX hydrate from ice XVII, Journal of Chemical Physics, 151 (2019) 104305. [Back, 2]  [Back to Top to top of page]
  51. A. Charkhesht, D. Lou, B. Sindle, C. Wen, S. Cheng and N. Q. Vinh, Insights into hydration dynamics and cooperative interactions in glycerol-water mixtures by terahertz dielectric spectroscopy, Journal of Physical Chemistry B, (2019) Article in press, doi:10.1021/acs.jpcb.9b07021. [Back]
  52. A. Striolo, Clathrate hydrates: recent advances on CH4 and CO2 hydrates, and possible new frontiers, Molecular Physics, (2019) Article in press, doi: 10.1080/00268976.2019.1646436. [Back]
  53. J. Bachler, P. H. Handle, N. Giovambattista and T. Loerting, Glass polymorphism and liquid–liquid phase transition in aqueous solutions: experiments and computer simulations, Physical Chemistry Chemical Physics , (2019) Article in press, doi: 10.1039/c9cp02953b. [Back, 2, 3]
  54. K. Hofer, G. Astl, E. Mayer and G. P. Johari, Vitrified dilute aqueous solutions. 4. Effects of electrolytes and polyhydric alcohols on the glass transition features of hyperquenched aqueous solutions, Journal of Physical Chemistry, 95 (1991) 10777-10781. [Back]
  55. H. Wu, Z. Guo, T.Wang, H. Wei, Y. Long, C. Yang, D. Wang, J. Lang, K. Huang, N. Hussain, C. Song, B. Guan, B. Ge and Q. Zhang, Ice as solid electrolyte to conduct various kinds of ions, Angewandte Chemie International Edition, (2019) Article in press, doi: 10.1002/anie.201907832. [Back]
  56. R. L. Benson, G. Trenins and S. C. Althorpe, Which quantum statistics–classical dynamics method is best for water? Faraday Discussions, (2019) Article in press, doi: 10.1039/C9FD00077A. [Back]
  57. N. Hanikel, M. S. Prévot, F. Fathieh, E. A. Kapustin, H. Lyu, H. Wang, N. J. Diercks, T. G. Glover and O. M. Yaghi, Rapid cycling and exceptional yield in a metal-organic framework water harvester, ACS Central Science, (2019) Article in press, doi: 10.1021/acscentsci.9b00745; R. F. Service, Crystalline nets snare water and make fuel from thin air, Science, 365 (2019 964-065; N. Fleming, Water from air, New Scientist, 243(3241) (2019) 38-41. [Back]
  58. K. Xia, D. V. Anand, S. Saxena and Y. Mu, Persistent homology analysis of osmolyte molecular aggregation and their hydrogen-bonding networks, Physical Chemistry Chemical Physics , (2019) Article in press, doi: 10.1039/C9CP03009C. [Back]
  59. B. V. Derjaguin, Amendment of archimedes' principle, Colloids and Surfaces A: Physicochemical and Engineering Aspects , 81 (1993) 289-290. [Back]
  60. B. W. Ninham, B. V. Derjaguin and J. Theo. G. Overbeek. Their times, and ours. Substantia, 3 (2019) 65-72. doi: 10.13128/Substantia-637; B. W. Ninham and P. Lo Nostro. Molecular forces and self assembly. In, Colloid, Nano Sciences and Biology. Cambridge University Press: Cambridge, 2010. [Back]
  61. S. Herrig, M. Thol, A. H. Harvey and E. W. Lemmon, A Reference equation of state for heavy water, Journal of Physical Chemistry Reference Data, 47 (2018) 043102. [Back]
  62. B. E. Poling, J. M. Prausnitz, and J. P. O'Connell, The Properties of Gases and Liquids, (2001) 5th Ed. New York: McGraw-Hill, Section A.5 - A.19. [Back]
  63. A. V. Plyasunov, V. S. Korzhinskaya, J. P. O'Connell, Correlation and prediction of thermodynamic properties of dilute solutes in water up to high T and P. I. Simple fluids He, Ne, Ar, Kr, Xe, Rn, H2, N2, O2, CO, CH4, Fluid Phase Equilibria, 498 (2019) 9-22 [Back]
  64. D. Pan and G. Galli, The fate of carbon dioxide in water-rich fluids under extreme conditions, Science Advances, 2 (2016) e1601278. [Back]
  65. S, Deguchi and N, Ifuku, Bottom-up formation of dodecane-in-water nanoemulsions from hydrothermal homogeneous solutions, Angewandte Chemie , 125 (2013) 6537-6540. [Back]
  66. S. Roy and B. Pal, Comparison of structure making/breaking properties of alkali metal ions Na+, K+ and Cs+ in water, arxiv.org/abs/1909.10262 (2019). [Back]
  67. J. C. Watso and W. B. Farquhar, Hydration status and cardiovascular function, Nutrients, 11 (2019) 1866. [Back]
  68. M. Taseidifar, A. G. Sanchis, R. M. Pashley, B. W. Ninham, Novel water treatment processes, Substantia, 3 (2019) 11-17. [Back]
  69. A. N Grekov, N. A Grekov and E. Sychov, New equations for sea water density calculation based on measurements of the sound speed, arXiv:1910.00351 [physics.ao-ph] (2019); Mekhatronika, Avtomatizatsiya, Upravlenie, 20 (2019) 143-151, doi: 10.17587/mau.20.143-151. [Back]
  70. X.-L. Qin , X.-L. Zhu , J.-W. Cao, L. Jiang, Y. Gu, X.-C. Wang and P. Zhang, Computational analysis of exotic molecular and atomic vibrations in Ice XV, Molecules, 24 (2019) 3115. [Back]
  71. J. F. Darby, A. P Hopkins, S.Shimizu, S. M Roberts, J. A Brannigan, J. P Turkenburg, G. H. Thomas, R. E. Hubbard,. and M. Fischer, Water networks can determine the affinity of ligand binding to proteins, Journal of the American Chemical Society, (2019) Article in press, doi: 10.1021/jacs.9b06275. [Back]
  72. T. Matsui, T. Yagasaki, M. Matsumoto and H.Tanaka, Phase diagram of ice polymorphs under negative pressure considering the limits of mechanical stability, Journal of Chemical Physics, 150 (2019) 041102. [Back]
  73. V. I. Kosyakov and V. A. Shestakov, On the possibility of the existence of a new ice phase under negative pressures, Doklady Physical Chemistry, 376 (2001) 49-51, translated from Doklady Akademii Nauk, 376 (2001) 782-784. [Back]
  74. G. Shen, J. S. Smith, C. Kenney-Benson and R. A. Ferry, In situ x-ray diffraction study of polyamorphism
    in H2O under isothermal compression and decompression, Journal of Chemical Physics, 150 (2019) 244201. [Back]
  75. E. Stefanutti , L. E. Bove , F. G. Alabarse , G. Lelong , F. Bruni and M. A. Ricci, Vibrational dynamics of confined supercooled water, Journal of Chemical Physics, 150 (2019) 224504. [Back]  [Back to Top to top of page]
  76. J. Zhu and M. Wakisaka, Effect of air nanobubble water on the growth and metabolism of Haematococcus lacustris and Botryococcus braunii , Journal of Nutritional Science and Vitaminology, 65(Supplement) (2019) S212-S216. [Back]
  77. A. Blahut , J. Hykl, P. Peukert, V. Vinš and J. Hrubý, Relative density and isobaric expansivity of cold and supercooled heavy water from 254 to 298 K and up to 100 MPa, Journal of Chemical Physics, 151 (2019) 034505. [Back]
  78. P. Banerjee and B. Bagchi, Ions’ motion in water, Journal of Chemical Physics, 150 (2019) 190901. [Back]
  79. A. Iorio, G. Camisasca , M. Rovere and P. Gallo, Characterization of hydration water in supercooled water-trehalose solutions: The role of the hydrogen bonds network, Journal of Chemical Physics, 151 (2019) 044507. [Back]
  80. L. Yang, H. Ji, X. Liu and W.-C. Lu, Ring-stacking water clusters: Morphology and stabilities, ChemistryOpen, 8 (2019) 210-218, doi: 10.1002/open.201800284. [Back]
  81. S. J. Buxton, D.Quigley and S. Habershon, The role of nuclear quantum effects in the relative stability of hexagonal and cubic ice, Journal of Chemical Physics, 151 (2019) 144503. [Back]
  82. J. M.Montes de Oca , S. R. Accordino, G. A. Appignanesi, P. H. Handle and F. Sciortino, Size dependence of dynamic fluctuations in liquid and supercooled water, Journal of Chemical Physics, 150 (2019) 144505. [Back]
  83. H. Tanaka, T. Yagasaki and M. Matsumoto, On the role of intermolecular vibrational motions for ice polymorphs I: Volumetric properties of crystalline and amorphous ices, Journal of Chemical Physics, 151 (2019) 114501. [Back
  84. Z. Guo, X. Wang, H. Wang, B. Hu, Z. Lei, M. Kobayashi, Y. Adachi, K. Shimizu and Z. Zhang, Effects of nanobubble water on the growth of Lactobacillus acidophilus 1028 and its lactic acid production, RSC Advances, 9 (2019) 30760. [Back]
  85. Y. Yu, T. Tyrikos-Ergas, Y. Zhu, G. Fittolani, V. Bordoni, A. Singhal, R. J. Fair, A. Grafmüller, P. H. Seeberger and M. Delbianco, Systematic hydrogen bond manipulations to establish polysaccharide structure-property correlations,
    Angewandte Chemie International Edition, (2019) Article in press, doi: 10.1002/anie.201906577. [Back]
  86. S. Gim, K. Jin Cho, H.-K. Lim and H. Kim, Structure, dynamics, and wettability of water at metal interfaces, Scientific Reports, 9 (2019) 14805. [Back]
  87. L. Shi, F. Hu and W. Min, Optical mapping of biological water in single live cells by stimulated Raman excited fluorescence microscopy, Nature Communications, 10 (2019) 4764. [Back]
  88. V. Yu. Chirkova, Ye. A. Sharlayeva, I. Ye. Stas, Boiling temperature and the enthalpy of water vaporization exposed to high frequency electromagnetic field, Серия «Химия», 2(94) (2019) 51-55, doi: 10.31489/2019Ch2/51-55. [Back]
  89. T. Seki, S.Sun, K. Zhong, C.-C. Yu, K. Machel, L. B. Dreier, E. H. G. Backus, M. Bonn and Y. Nagata, Unveiling heterogeneity of interfacial water through the water bending mode, Journal of Physical Chemistry Letters, (2019) Article in press, doi: 10.1021/acs.jpclett.9b02748. [Back]
  90. Y. Liu, Y. Zhou, T. Wang, J. Pan, B. Zhou, T. Muhammad, C. Zhou and Y. Li, Micro-nano bubble water oxygation: Synergistically improving irrigation water use efficiency, crop yield and quality, Journal of Cleaner Production, 222 (2019) 835-843; doi: 10.1016/j.jclepro.2019.02.208. [Back]
  91. S. Rønneberg, Y. Zhuo, C. Laforte, J. He and Z. Zhang, Interlaboratory study of ice adhesion using different techniques, Coatings, 9 (2019) 678, doi: 10.3390/coatings9100678. [Back]
  92. P. Jafari, A. Amritkar, and H. Ghasemi, On temperature discontinuity at an evaporating water interface, arXiv:1909.08013v1 [physics.chem-ph] 17 Sep 2019. [Back]
  93. M. H. Alheshibri, Nanobubbles in Bulk , A thesis submitted for the degree of Doctor of Philosophy in Physics, Research School of Physics and Engineering, The Australian National University, May 2019. [Back]
  94. N. Nirmalkar, A. W. Pacek and M. Barigou, Bulk nanobubbles from acoustically cavitated aqueous organic solvent mixtures, Langmuir, 35 (2019) 2188-2195. [Back]
  95. F. O. Farias, J. F. B. Pereira, J. A. P. Coutinho, L. Igarashi-Mafra and M. R. Mafra, Understanding the role of the hydrogen bond donor of the deep eutectic solvents in the formation of the aqueous biphasic systems, Fluid Phase Equilibria, 503 (2020) 112319. [Back]
  96. A. Danchin and P. I. Nikel, Why nature chose potassium, Journal of Molecular Evolution, (2019) Article in press, doi: 10.1007/s00239-019-09915-2. [Back]
  97. J. M. J. van Leeuwen, The friction of tilted skates on ice, arXiv:1910.13802v1 [physics.flu-dyn] 17 Oct 2019. [Back]
  98. A. Faure, P. Hily-Blant, C. Rist, G. Pineau des Forêts, A. Matthews and D. R. Flower, The ortho-to-para ratio of water in interstellar clouds, Monthly notices of the Royal Astronomical Society, 487 (2019) 3392-3403, doi: 10.1093/mnras/stz1531. [Back]
  99. M. Prakash, T. Vanidasan and V. Subramanian, Guanidinium cation–water clusters, Theoretical Chemistry Accounts, 137 (2018) 108. [Back]
  100. D. C. Elton, Compelling alternative theories for exclusion zone phenomena in water and other liquids, arXiv:1909.06822v1 [cond-mat.soft] 15 Sep 2019. [Back] [Back to Top to top of page]


 

Home | Site Index | Site Map | Search | LSBU | Top

 

This page was established in 2019 and last updated by Martin Chaplin on 15 November, 2019


Creative Commons License
This work is licensed under a Creative Commons Attribution
-Noncommercial-No Derivative Works 2.0 UK: England & Wales License