Water site headerMasthead Island, Great Barrier Reef Print-me keygo to Water Visitor Book contributions
Go to my page Water Structure and Science

Water Structure and Science References 301 - 400

 

  1. M. Bühl and A. Hirsch, Spherical aromaticity of fullerenes, Chem. Rev. 101 (2001) 1153-1183. [Back]
  2. N. O. Mchedlov-Petrossyan, V. K. Klochkov, G. V. Andrievsky and A. A. Ishchenko, Interaction between colloidal particles of C60 hydrosol and cationic dyes, Chem. Phys. Lett. 341 (2001) 237-244. [Back]
  3. G. V. Andrievsky, V. K. Klochkov, A. Bordyuh and G. I. Dovbeshko, Comparative analysis of two aqueous-colloidal solutions of C60 fullerene with help of FTIR reflectance and UV-Vis spectroscopy, Chem. Phys. Lett. 364 (2002) 8-17; S. M. Andreev, D. D. Purgina, E. N. Bashkatova, A. V. Garshev, A. V. Maerle and M. R. Khaitov, Facile preparation of aqueous fullerene C60 nanodispersions, Nanotechnologies in Russia, 9 (2014) 369-379 first published in Rossiiskie Nanotekhnologii, 9 (2014). [Back]
  4. H. D. B. Jenkins and Y. Marcus, Viscosity B-coefficients of ions in solution, Chem. Rev. 95 (1995) 2695-2724; Y. Marcus, The effect of complex anions on the structure of water, J. Solution Chem. 44 (2015) 2258–2265. [Back, 2]
  5. M. V. Korobov, E. B. Stukalin, N. I. Ivanova, N. V. Avramenko and G. V. Andrievsky, DSC study of C60 - water system : unexpected peaks. In: The exciting world of nanocages and nanotubes, P. V. Kamat, D. M. Guldi, and K. M. Kadish, Eds, Fullerenes 12 (2002) 799-814, The Electrochemical Society Inc., Pennington, NJ, USA. [Back]
  6. J. Havel and E. Högfeldt, Evaluation of water sorption equilibrium data on Dowex ion exchanger using WSLET-MINUIT program, Scripta Fac. Sci. Nat. Univ. Masaryk. Brun. 25 (1995) Chemistry, 73-84. [Back]
  7. Hi. Uedaira and Ha. Uedaira, Role of hydration of polyhydroxy compounds in biological systems, Cell. Mol. Biol. 47 (2001) 823-829. [Back, 2]
  8. L. M. Crowe, Lessons from nature: the role of sugars in anhydrobiosis, Comp. Biochem. Physiol. A 131 (2002) 505-513. [Back]
  9. E. Dickinson, Hydrocolloids at interfaces and the influence on the properties of dispersed systems, Food hydrocolloids 17 (2003) 25-39. [Back, 2, 3]
  10. A. H. Harvey, J. S. Gallagher and J. M. H. Levelt Sengers, Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density, J. Phys. Chem. Ref. Data 27 (1998) 761-774. [Back, 2]
  11. R. Schmid, Recent advances in the description of the structure of water, the hydrophobic effect, and the like-dissolves-like rule, Monatsh. Chem. 132 (2001) 1295-1326. T. M. Truskett and K. A. Dill, Predicting water's phase diagram and liquid-state anomalies, J. Chem. Phys. 117 (2002) 5101-5104. [Back]
  12. Gyan Johari, Erwin Mayer, Andreas Hallbrucker and Thomas Loerting all propose that the glass transition point of water is 136 K. (a) G. P. Johari, G. Astl and E. Mayer, Enthalpy relaxation of glassy water, J. Chem. Phys. 92 (1990) 809-810. (b) G. P. Johari, Calorimetric features of high-enthalpy amorphous solids and glass-softening temperature of water, J. Phys. Chem. B 107 (2003) 9063-9070. (c) G. P. Johari, State of water at 136 K determined by its relaxation time Phys. Chem. Chem. Phys. 7 (2005) 1091-1095. (d) I. Kohl, L. Bachmann, E. Mayer, A. Hallbrucker and T. Loerting, Water behaviour: Glass transition in hyperquenched water?, Nature 435 (2005) E1. (e) I. Kohl, L. Bachmann, A. Hallbrucker, E. Mayer, and T. Loerting, Liquid-like relaxation in hyperquenched water at <= 140 K, Phys. Chem. Chem. Phys. 7 (2005) 3210-3220 [Back]. However Austen Angell proposed 165 K (f) V. Velikov, S. Borick, C. A. Angell, The glass transition of water, based on hyperquenching experiments, Science 294 (2001) 2335-2338. (g) D. D. Klug, Glassy water, Science 294 (2001) 2305-2306, (h) C. A. Angell, Amorphous water, Ann. Rev. Phys. Chem. 55 (2004) 559-583. (i) Y. Yue and C. A. Angell, Clarifying the glass-transition behaviour of water by comparison with hyperquenched inorganic glasses, Nature 427 (2004) 717 - 720. (j) Y. Yue and C. A. Angell, Water behaviour: Glass transition in hyperquenched water? (reply), Nature 435 (2005) E1-E2. The dispute may not be over, see (k) P. Earis, The mysterious nature of water, Chem. World 2(4) (2005) 23. But 136 K appears most likely (S. Capaccioli and K. L. Ngai, Resolving the controversy on the glass transition temperature of water? J Chem Phys. 135(2011) 104504), see also [1005] and [1200]. Angell reconciles the different views (l) C. A. Angell, Insights into phases of liquid water from study of its unusual glass-forming properties, Science 319 (2008) 582-587, However, Jan Swenson and José Teixeira propose ~228 K, (m) J. Swenson and J. Teixeira, The glass transition and relaxation behavior of bulk water and a possible relation to confined water, J. Chem. Phys. 132 (2010) 014508, and McCartneyand Sadtchenko, propose ~205 K using extrapolation from concentrated solutions of organic solutes, (n) S. A. McCartney and V. Sadtchenko, Fast scanning calorimetry studies of the glass transition in doped amorphous solid water: Evidence for the existence of a unique vicinal phase, J. Chem. Phys. 138 (2013) 084501. (see also [2048]) [Back, 2]
  13. Alginate junction zone structure optimized using Hyperchem (Hypercube, Inc) and the AMBER-96 force field using the C0 parameters for calcium adapted from J. Aqvist, Ion water interaction potentials derived from free-energy perturbation simulations J. Phys. Chem. 94 (1990) 8021-8024 (distance dependent dielectric and (0.5) scaled van der Waals and electrostatic interaction); similar results are given using the AMBERS force field.  [Back]
  14. F. David, V. Vokhmin and G. Ionova, Water characteristics depend on the ionic environment. Thermodynamics and modelisation of the aquo ions. J. Mol. Liq. 90 (2001) 45-62. [Back]
  15. A. J. Rowe, Probing hydration and the stability of protein solutions - a colloid science approach, Biophys. Chem. 93 (2001) 93-101. [Back]
  16. M. Masamura, Ab initio study of the structure of CH3COO- in aqueous solution, J. Mol. Structr. (Theochem) 466 (1999) 85-93. [Back]
  17. H. Muta, M. Miwa and M. Satoh, Ion-specific swelling of hydrophilic polymer gels, Polymer 42 (2001) 6313-6316. H. Muta, S. Kawauchi and M. Satoh, Ion effects on hydrogen-bonding hydration of polymer an approach by 'induced force model', J. Mol. Struct. (Theochem) 620 (2003) 65-76. [Back]
  18. T. V. Chalikian, Structural thermodynamics of hydration, J. Phys. Chem. B 105 (2001) 12566-12578. [Back, 2]
  19. D. A. Ledward, Gelation of gelatin, in Functional properties of food macromolecules, ed. J. R. Mitchell and D. A. Ledward (Elsevier Applied Science Publishers Ltd, 1986) pp171-201.  [Back]
  20. G. M. Mrevlishvili, Low-temperature heat capacity of biomacromolecules and the entropic cost of bound water in proteins and nucleic acids (DNA), Thermochim. Acta 308 (1998) 49-54. [Back]
  21. A. E. Oliver, D. K. Hincha and J. H. Crowe, Looking beyond sugars: the role of amphiphilic solutes in preventing adventitious reactions in anhydrobiotes at low water contents, Comp. Biochem. Physiol. A 131 (2002) 515-525. [Back]
  22. P. J. H. Daas, H. A Schols and  H. H. J. de Jongh, On the galactosyl distribution of commercial galactomannans, Carbohydr. Res. 329 (2000) 609-619. [Back, 2]
  23. G. H. Peslherbe. B. M. Ladanyi and J. T. Hynes, Structure of NaI ion pairs in water clusters, Chem. Phys. 258 (2000) 201-224. [Back]
  24. C. Simmerling, T. Fox and P. A. Kollman, Use of locally enhanced sampling in free energy calculations: Testing and application to the alpha -> beta anomerization of glucose, J. Am. Chem. Soc. 120 (1998) 5771-5782. [Back]
  25. T. Steiner, Hydrogen bonds from water molecules to aromatic acceptors in very high-resolution protein crystal structures, Biophys. Chem. 95 (2002) 195-201. [Back] [Back to Top to top of page]
  26. M-C. Ralet, V. Dronnet, H. C. Buchholt and J.F Thibault, Enzymatically and chemically de-esterified lime pectins: characterisation, polyelectrolyte behaviour and calcium binding properties, Carbohydr. Res. 336 (2001) 117-125. [Back]
  27. F. Sussich, C. Skopec, J. Brady and A. Cesàro, Reversible dehydration of trehalose and anhydrobiosis: from solution state to an exotic crystal? Carbohydr. Res. 334 (2001) 165-176. F. Sussich, C. Skopec, J. Brady and A. Cesàro Corrigendum to "Reversible dehydration of trehalose and anhydrobiosis: from solution state to an exotic crystal?" Carbohydr. Res. 338 (2003) 1259. [Back]
  28. S. Pérez, K. Mazeau and C. Hervé du Penhoat, The three-dimensional structures of the pectic polysaccharides, Plant Physiol. Biochem. 38 (2000) 37-55. [Back]
  29. J. Higo, M. Sasai, H. Shirai, H. Nakamura and T. Kugimiya, Large vortex-like structures of dipole field in computer models of liquid water and dipole-bridge between biomolecules, PNAS 98 (2001) 5961-5964. [Back, 2, 3]
  30. A. Buléon, P. Colonna, V. Planchot and S. Ball, Starch granules: structure and biosynthesis, Int. J. Biol. Macromol. 23 (1998) 85-112. [Back]
  31. K. Esaki, F. Ninomiya, K. Hisaki,  T. Higasa, K. Shibata, K.Murataand S. Aibara, Effects of high voltage electric field treatment on the water activity of bread,  Biosci. Biotech. Biochem. 60 (1996) 1444-1449. [Back]
  32. M. Uudsemaa and T. Tamm, Calculations of hydrated titanium ion complexes: structure and influence of the first two coordination spheres, Chem Phys. Lett. 342 (2001) 667-672. M. Uudsemaa and T. Tamm, Calculations of hydration enthalpies of aqueous transition metal cations using two coordination shells and central ion substitution, Chem Phys. Lett. 400 (2004) 54-58. [Back]
  33. P. Stöckel, H. Vortisch, T Leisner and H. Baumgärtel, Homogeneous nucleation of supercooled liquid water in levitated microdroplets, J. Mol. Liq. 96-97 (2002) 153-175. [Back]
  34. R. S. Smith, Z. Dohnálek, G. A. Kimmel, K. P. Stevenson, B. D. Kay, The self-diffusivity of amorphous solid water near 150 K, Chem. Phys. 258 (2000) 291-305. [Back, 2, 3, 4]
  35. V. Elia and M. Niccoli, New physico-chemical properties of extremely diluted aqueous solutions, J. Therm. Anal. Calorim. 75 (2004) 815-836. see also V. Elia, M. Marchese, M. Montanino, E. Napoli, M. Niccoli, L. Nonatelli and A. Ramaglia, Hydrohysteretic phenomena of "extremely diluted solutions" induced by mechanical treatments. A calorimetric and conductometric study at 25 °C, J. Solution Chem. 34 (2005) 947-960. [Back]
  36. V. Elia and M. Niccoli, New physico-chemical properties of water induced by mechanical treatments A calorimetric study at 25 °C, J. Thermal Anal. Calorim. 61 (2000) 527-537. [Back, 2
  37. C. C. M. Samson and W. Klopper, Ab initio calculation of proton barrier and binding energy of the (H2O)OH- complex, J. Mol. Structr. (Theochem)  586 (2002) 201-208. [Back]
  38. Y. Hayashi, N. Shinyashiki and S. Yagihara, Dynamical structure of water around biopolymers investigated by microwave dielectric measurements using time domain reflectometry method, J. Non-Cryst. Solids 305 (2002) 328-332. [Back]
  39. A. Imberty, H. Chanzy and S. Pérez, The double-helical nature of the crystalline part of A-starch, J. Mol. Biol. 201 (1988) 365-378. [Back, 2]
  40. V. Gupta, S. Nath and S. Chand, Role of water structure on phase separation in polyelectrolyte-polyethyleneglycol based aqueous two-phase systems, Polymer  43 (2002) 3387-3390. [Back]
  41. K. Miyata, H. Kanno, T. Niino and K. Tomizawa, Cationic and anionic effects on the homogeneous nucleation of ice in aqueous alkali halide solutions, Chem. Phys. Lett. 354 (2002) 51-55. [Back]
  42. B. C. Gordalla and M. D. Zeidler, Molecular-dynamics in the system water-dimethylsulfoxide - a NMR relaxation study, Mol. Phys. 59 (1986) 817-828. [Back]
  43. U. Kaatze, R. Behrends and R. Pottel, Hydrogen network fluctuations and dielectric spectrometry of liquids, J. Non-Cryst. Solids 305 (2002) 19-28. [Back, 2]
  44. K. A. T. Silverstein, A. D. J. Haymet and K. A. Dill, The strength of hydrogen bonds in liquid water and around nonpolar solutes, J. Am. Chem. Soc. 122 (2000) 8037-8041. [Back]
  45. R. Loris, U. Langhorst, S. De Vos, K. Decanniere, J. Bouckaert, D. Maes, T. R. Transue, and J. Steyaert, Conserved water molecules in a large family of microbial ribonucleases, Proteins 36 (1999) 117-134. Protein Data Bank, 1BVI [Back]
  46. (a) P. Belon, J. Cumps, M. Ennis, P. F. Mannaioni, J. Sainte-Laudy, M. Roberfroid and F. A. C. Wiegant, Inhibition of human basophil degranulation by successive histamine dilutions: Results of a European multi-centre trial, Inflamm. Res. 48 Suppl. 1 (1999) S17-S18. P. Belon, J. Cumps, M. Ennis, P. F. Mannaioni, M. Robertfroid, J. Sainte-Laudy and F. A. C. Wiegant, Histamine dilutions modulate basophil activation, Inflamm. Res. 53 (2004) 181-188. J. Sainte-Laudy and P. Belon, Use of four different flow cytometric protocols for the analysis of human basophil activation. Application to the study of the biological activity of high dilutions of histamine, Inflamm. Res. 55, Suppl. 1 (2006) S23-S24. (b) S. J. Hirst, N. A. Hayes, J. Burridge, F. L. Pearce and J. C. Foreman, Human basophil degranulation is not triggered by very dilute antiserum against human IgE, Nature 366 (1993) 525-527.(c) J. Burridge, A repeat of the 'Benveniste' experiment: Statistical analysis, Research Report 100, Department of Statistical Science, University College London, England. (1992). (d) J. Benveniste, B. Ducot and A. Spira, Memory of water revisited, Nature 370 (1994) 322. (e) A. Spira, recounted in Heretic 1, Jacques Benveniste BBC2 program 15 July 1994. [Back]
  47. M. Matsumoto, S. Salto and I. Ohmine, Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing, Nature 416 (2002) 409-413. [Back]
  48. P. F. Bernath, The spectroscopy of water vapour: Experiment, theory and applications, Phys. Chem. Chem. Phys. 4 (2002) 1501-1509; J. Tennyson, P. F. Bernath, L. R. Brown, A. Campargue, A. G. Császár, L. Daumont, R. R. Gamache, J. T. Hodges, O. V. Naumenko, O. L. Polyansky, L. S. Rothman, A. C. Vandaele and N. F. Zobov, A database of water transitions from experiment and theory (IUPAC Technical Report), Pure Appl. Chem. 86 (2014) 71-83. [Back]
  49. R. Corfield, Close encounters with crystalline gas, Chemistry in Britain 38 (2002) 22-25. [Back]
  50. O. V. Boyarkin, M. A. Koshelev, O. Aseev, P. Maksyutenko, T. R. Rizzo, N. F. Zobov, L. Lodi, J. Tennyson and O. L. Polyansky, Accurate bond dissociation energy of water determined by triple-resonance vibrational spectroscopy and ab initio calculations, Chem. Phys. Lett. 568-569 (2013)14–20. [Back, 2] [Back to Top to top of page]
  51. G. H. Pollack, Is the cell a gel-and why does it matter? Jap. J. Physiol. 51 (2001) 649-660. [Back, 2]
  52. M. S. Cheung, A. E. Garcia and J. N. Onuchic, Protein folding mediated by solvation: water expulsion and formation of the hydrophobic core occur after the structural collapse, PNAS 99 (2002) 685-690. [Back]
  53. A. Szkatula, M. Balanda and M. Kopec, Magnetic treatment of industrial water. Silica activation. Eur. Phy. J. AP 18 (2002) 41-49. [Back]
  54. M. Akyurt, G. Zaki and B. Habeebullah, Freezing phenomena in ice-water systems. Energy Conversion Management 43 (2002) 1773-1789. [Back]
  55. H. Hayashi, N. Watanabe, Y. Udagawa and C.-C. Kao, The complete optical spectrum of liquid water measured by inelastic x-ray scattering. PNAS 97 (2000) 6264-6266. [Back]
  56. J. M. Williams, Thermal and nonthermal mechanisms of biological interaction of microwaves, arXiv.org Physics e-Print archive physics/0102007 (2002). [Back]
  57. G. B. Kauffman and M. T. Beck, Self-deception in science; the curious case of Giorgio Piccardi, Speculations Sci. Technol. 10 (1987) 113-122. [Back]
  58. L. Boulanger, Observations on variations in electrical conductivity of pure demineralized  water: modification ("activation") of conductivity by low-frequency, low level alternating electric fields, Int. J. Biometeorology 41 (1998) 137-140. [Back, 2]
  59. B. Kamb, A. Prakash and C. Knobler, Structure of ice V, Acta Crystallogr. 22 (1967) 706-715. [Back]
  60. W. F. Kuhs, J. L. Finney, C. Vettier and D. V. Bliss, Structure and hydrogen ordering in ices VI, VII and VIII by neutron powder diffraction, J. Chem. Phys. 81 (1984) 3612-3623. [Back]
  61. J. D. Jorgensen and T. G. Worlton, Disordered structure of D2O ice VII from in situ neutron powder diffraction, J. Chem. Phys. 83 (1985) 329-333. [Back
  62. J. M. Besson, P. Pruzan, S. Klotz, G. Hamel, B. Silvi, R. J. Nelmes, J. S. Loveday, R. M. Wilson and S. Hull, Variation of interatomic distances in ice-VIII to 10 GPa, Phys. Rev. B 49 (1994) 12540-12550. [Back]
  63. F. De Meyer and C. Capel-Boute, Statistical analysis of Piccardi chemical tests, Int. J. Biometeor. 31 (1987) 301-322. [Back]
  64. J. Grdadolnik and Y. Maréchal, Urea and urea-water solutions - an infrared study, J. Mol. Struct. 615 (2002) 177-189. [Back]
  65. H. R. Sørensen, S. Pedersen and A. S. Meyer, Characterization of solubilized arabinoxylo-oligosaccharides by MALDI-TOF MS analysis to unravel and direct enzyme catalyzed hydrolysis of insoluble wheat arabinoxylan, Enzyme Microb. Technol. 41 (2007) 103-110. [Back]
  66. R. J. Speedy, Self-replicating structures in water, J. Phys. Chem. 88 (1984) 3364-3373. [Back, 2]
  67. C. A. Tischer, M. Iacomini and P. A. J. Gorin, Structure of the arabinogalactan from gum tragacanth (Astralagus gummifer), Carbohydr. Res. 337 (2002) 1647-1655. [Back]
  68. L. J. Goodrum, A. Patel, J. F. Leykam and M. J. Kieliszewski, Gum arabic glycoprotein contains glycomodules of both extensin and arabinogalactan-glycoproteins, Phytochemistry 54 (2000) 99-106. D. Renard, L. Lavenant-Gourgeon, M.-C. Ralet and C. Sanchez, Acacia senegal gum: continuum of molecular species differing by their protein to sugar ratio, molecular weight, and charges, Biomacromolecules 7 (2006) 2637-2649. [Back]
  69. C. Sanchez, D. Renard, P. Robert, C. Schmitt and J. Lefebvre, Structure and rheological properties of acacia gum dispersions, Food Hydrocolloids 16 (2002) 257-267. [Back]
  70. P. A. Williams and G. O. Phillips, Gum arabic, in G. O. Phillips and P. A. Williams, Handbook of hydrocolloids, CRC Press, Cambridge, England (2000) pp. 155-168. [Back]
  71. M. E. Tuckerman, D. Marx and M. Parrinello, The nature and transport mechanism of hydrated hydroxide ions in aqueous solution, Nature 417 (2002) 925-929. M. E. Tuckerman, A. Chandra and D. Marx, Structure and dynamics of OH- (aq), Acc. Chem. Res. 39 (2006) 151-158. [Back, 2]
  72. S. Ohsawa, T. Kawamura, N. Takamatsu and Y. Yusa, Raleigh scattering by aqueous colloidal silica as a cause for the blue color of hydrothermal water, J. Volcanol. Geotherm. Res. 113 (2002) 49-60. [Back]
  73. S. Myneni, Y. Luo, L. Å. Näslund, M. Cavalleri, L. Ojamäe, H. Ogasawara, A. Pelmenschikov, Ph. Wernet, P. Väterlein, C. Heske, Z. Hussain, L. G. M. Pettersson and A. Nilsson, Spectroscopic probing of local hydrogen-bonding structures in liquid water, J. Phys.: Condens. Matter 14 (2002) L213-L219. [Back, 2]
  74. P. M. Wiggins, Water in complex environments such as living systems, Physica A 314 (2002) 485-491. [Back, 2]
  75. L. J. Michot, F. Villiéras, M. François, I. Bihannic, M. Pelletier, J-M. Cases, Water organisation at the solid-aqueous solution interface, Compt. Rend. Geosci. 334 (2002) 611-631. [Back] [Back to Top to top of page]
  76. A. Khan, M. R. Khan, M. F. Khan and F. Khanam, A liquid water model that explains the variation of surface tension of water with temperature, Jpn. J. Appl. Phys. 40 (2001) 1467-1471. [Back]
  77. W. E. Royer Jr., A. Pardanani, Q. H. Gibson, E. S. Peterson and J.  M. Friedman, Ordered water molecules as key allosteric mediators in a cooperative dimeric hemoglobin, PNAS 93 (1996) 14526-14531. [Back, 2]
  78. C. W. Bock, G. D. Markham, A. K. Katz and J. P. Glusker, The arrangement of first- and second-shell water molecules around metal ions: effects of charge and size, Theor. Chem. Acc. 115 (2006) 100-112. [Back, 2]
  79. J. J. Dannenberg, Cooperativity in hydrogen bonded aggregates. Models for crystals and peptides, J. Mol. Struct. 615 (2002) 219-226. [Back]
  80. D. T. Puerta and S. M. Cohen, [(TpMe,Ph)2 Zn2(H3O2 )]ClO4 : a new H3O2 species relevant to zinc proteinases, Inorg. Chim. Acta 337 (2002) 459-462. [Back]
  81. (a) K. N. Joshipura, S. Gangopadhyay, C. G. Limbachiya and M. Vinodkumar, Electron impact ionization of water molecules in ice and liquid phases, J. Phys.: Conf. Ser. 80 (2007) 012008 (b) R. G. Tonkyn, R. Wiedmann, E. R. Grant and M. G. White, Rotationally resolved photoionization of H2O, J. Chem. Phys. 95 (1991) 7033-7040. [Back]
  82. K. Röttger, A. Endriss, J. Ihringer, S. Doyle and W. F. Kuhs, Lattice constants and thermal expansion of H2O and D2O ice Ih between 10 and 265 K, Acta Crystallogr. B50 (1994) 644-648. [Back, 2]
  83. L. G. Dowell and A. P. Rinfret, Low-Temperature Forms of Ice as Studied by X-Ray Diffraction, Nature 188 (1960) 1144-1148. [Back]
  84. B. Kamb B, Ice II: A proton-ordered form of ice, Acta Crystallogr. 17 (1964) 1437-1449. [Back]
  85. J. D. Londono, W. F. Kuhs and J. L. Finney, Neutron diffraction studies of ices III and IX on under-pressure and recovered samples, J. Chem. Phys. 98 (1993) 4878-4888. [Back, 2]
  86. C. G. Salzmann, I. Kohl, T. Loerting, E. Mayer and A. Hallbrucker, Pure ices IV and XII from high-density amorphous ice, Can. J. Phys. 81 (2003) 25-32. [Back]
  87. H. Engelhardt and B. Kamb, Structure of ice IV, a metastable high-pressure phase, J. Chem. Phys. 75 (1981) 5887-5899. [Back]
  88. A. J. Leadbetter, R. C. Ward, J. W. Clark, P. A. Tucker, T. Matsuo and S. Suga, The equilibrium low-structure of ice, J. Chem. Phys. 82 (1985) 424-428. [Back]
  89. S. J. La-Placa, W. C. Hamilton, B. Kamb and A. Prakash, On a nearly proton-ordered structure for ice IX, J. Chem. Phys. 58 (1973) 567-580 [Back]
  90. M. O'Keeffe, New ice outdoes related nets in smallest-ring size, Nature 392 (1998) 879. [Back]
  91. M. Koza, H. Schober, A. Tlle, F. Fujara and T. Hansen, Formation of ice XII at different conditions, Nature 397 (1999) 660-661. [Back]
  92. T. Head-Gordon and G. Hura, Water structure from scattering experiments and simulation, Chem. Rev. 102 (2002) 2651-2670. [Back]
  93. H. J. Bakker and H.-K. Nienhuys, Delocalization of protons in liquid water, Science 297 (2002) 587-590. [Back]
  94. C. A. Tulk, C. J. Benmore, J. Urquidi, D. D. Klug, J. Neuefeind, B. Tomberli and P. A. Egelstaff, Structural studies of several distinct metastable forms of amorphous ice, Science 297 (2002) 1320-1323. C. A. Tulk, C. J. Benmore, D. D. Klug, J. Urquidi, J. Neuefeind and B. Tomberli, Response, Science 299 (2003) 45. [Back, 2, 3]
  95. C. A. Koh, Towards a fundamental understanding of natural gas hydrates, Chem. Soc. Rev. 31 (2002) 157-167. E. D. Sloan, Fundamental principles and applications of natural gas hydrates, Nature 426 (2003) 353-359. [Back]
  96. M. Cavalleri, H. Ogasawara, L. G. M. Pettersson and A. Nilsson, The interpretation of X-ray absorption spectra of water and ice, Chem. Phys. Lett. 364 (2002) 363-370. [Back]
  97. I. G. Mogilner, G. Ruderman and J. R. Grigera, Collagen stability, hydration and native state, J. Mol. Graphics modelilng 21 (2002) 209-213. [Back]
  98. F. Hajdu, A model of liquid water Tetragonal clusters: description and determination of parameters, Acta Chim. (Budapest) 93 (1977) 371-394. [Back]
  99. L. Otero, A. D. Molina-Garcia and P. D. Sanz, Some interrelated thermophysical properties of liquid water and ice.1. A user-friendly modeling review for high-pressure processing, Crit. Rev. Food Sci. Nutr. 42 (2002) 339-352. [Back]
  100. B.Guillot, A reappraisal of what we have learnt during three decades of computer simulations on water, J. Mol. Liq. 101 (2002) 219-260. [Back] [Back to Top to top of page]

 

 

 

Home | Site Index | Site Map | Search | LSBU | Top

 

This page was established in 2001 and last updated by Martin Chaplin on 17 May, 2017


Creative Commons License
This work is licensed under a Creative Commons Attribution
-Noncommercial-No Derivative Works 2.0 UK: England & Wales License