Water site headerMasthead Island, Great Barrier Reef Print-me keygo to Water Visitor Book contributions
 Go to my page Water Structure and Science

Water Structure and Science, References 3901- 4000

 

  1. S. I. Koshoridze, Surface nanobubbles with fixed boundaries. Technical Physics Letters,  45 (2019) 576-579; doi: 10.1134/S1063785019060105. [Back]
  2. A. J. Jadhav and M. Barigou, Bulk nanobubbles or not nanobubbles: That is the question, Langmuir, 36 (2020) 1699-1708. [Back]
  3. E. D. Michailidi, G. Bomis, A. Varoutoglou, G. Z. Kyzas, G. Mitrikas, A. Ch. Mitropoulos, E. K. Efthimiadou and E. P Favvas, Bulk nanobubbles: production and investigation of their formation/stability mechanism, Journal of Colloid and Interface Science, 564 (2020) 371-380. [Back]
  4. L. Zhou, X. Wang, H.-J. Shin, J. Wang, r. tai, X. Zhang, H. Fang, W. Xiao, L.Wang, C.Wang, X. Gao, J. Hu and L. Zhang, Ultra-high density of gas molecules confined in surface nanobubbles in ambient water, Journal of the American Chemical Society, (2020) Article in press, doi: 10.1021/jacs.9b11303. [Back]
  5. M. Tikanmäki and P. Sainio, Experiments on friction of dry and wet ice, Cold Regions Science and Technology, 172 (2020) 102990. [Back]
  6. A. Arsiccio, J. McCarty, R. Pisano and J.-E. Shea, Heightened cold-denaturation of proteins at the ice-water interface, Journal of the American Chemical Society, (2020) Article in press, doi: 10.1021/jacs.9b13454. [Back]
  7. J. Munćan, J. Š. Rosić, I. Mileusnić, V. Matović, L. Matija and R. Tsenkova, The structure of water in soft contact lenses: near infrared spectroscopy and Aquaphotomics study, in Proceedings of the 18th Intnternational Conference on Near Infrared Spectroscopy, Ed. by S.B. Engelsen, K.M. Sørensen and F. van den Berg. IM Publications Open, Chichester, pp. 99–104 (2019). https://doi.org/10.1255/nir2017.099. [Back]
  8. H. Nada, Pathways for the formation of ice polymorphs from water predicted by a metadynamics method, Scientific Reports, 10 (2020) 4708. [Back]
  9. K. Komatsu, S. Klotz, S. Machida, A. Sano-Furukawa, T. Hattori and H. Kagi, Anomalous hydrogen dynamics of the ice VII–VIII transition revealed by high-pressure neutron diffraction, Proceedings of the National Academy of Sciences, (2020) Article in press, doi: 10.1073/pnas.1920447117. [Back]
  10. H. Kwon, J. Basran, J. M. Devos, R. Suardíaz, M. W. van der Kamp, A. J. Mulholland, T. E. Schrader, A. Ostermann, M. P. Blakeley, P. C. E. Moody, and E. L. Raven, Visualizing the protons in a metalloenzyme electron proton transfer pathway, Proceedings of the National Academy of Sciences, (2020) Article in press, doi: 10.1073/pnas.1918936117. [Back]
  11. Y.Nojima, Y.Shioya, H. Torii and S. Yamaguchi, Hydrogen order at the surface of ice Ih revealed by vibrational spectroscopy, Chemical Communications, (2020) Article in press, doi: 10.1039/d0cc00865f. [Back]
  12. J. Xu, J. Liu, J. Liu, W. Hu, X. He and J. Li, Phase transition of ice at high pressures and low temperatures, Molecules, 25 (2020) 486. [Back, 2]
  13. O. Piqué, F. Illas and F. Calle-Vallejo, Designing water splitting catalysts using rules of thumb: advantages, dangers and alternatives, Physical Chemistry Chemical Physics, (2020) Article in press, doi: 10.1039/d0cp00896f. [Back]
  14. P. Chettiyankandy, R. Ghosh and S. Chowdhuri, Effects of concentration and pressure on the aqueous solvation structure of ammonia and composition dependent ion solvation scenario in water-ammonia mixtures, Fluid Phase Equilibria, (2020), doi: https://doi.org/10.1016/j.fluid.2020.112507. [Back]
  15. H. Iyota and R. Krastev, Equilibrium thickness of foam films and adsorption of ions at surfaces: Water and aqueous solutions of sodium chloride, hydrochloric acid, and sodium hydroxide, Journal of Colloid and Interface Science, 565 (2020) 405-415. [Back]
  16. F. G. Quiroz, V. F. Fiore, J. Levorse, L. Polak, E. Wong, H. A. Pasolli and E. Fuchs, Liquid-liquid phase separation drives skin barrier formation, Science, 367 (2020) 1210. [Back]
  17. C. Wang, B. Zhou, Y. Tu, M. Duan, P. Xiu, J. Li and H. Fang, Critical dipole length for the wetting transition due to collective water-dipoles interactions, Scientific Reports, 2 (2012) 358. [Back]
  18. A. Sultana, J. Meesungnoen and J.-P. Jay-Gerin, Yields of primary species in the low-linear energy transfer radiolysis of water in the temperature range of 25–700 °C, Physical Chemistry Chemical Physics, (2020) Article in press, doi: 10.1039/d0cp00601g. [Back]
  19. G. L. Stephens, J. Li, M. Wild, C. A. Clayson, N. Loeb, S. Kato, T. L’Ecuyer, P. W. Stackhouse Jr, M. Lebsock and T. Andrews, An update on Earth’s energy balance in light of the latest global observations, Nature Geoscience, 5 (2012) 691-696. [Back]
  20. H. Nakagawa and M. Kataoka, Rigidity of protein structure revealed by incoherent neutron scattering, Biochimica et Biophysica Acta (BBA) - General Subjects, 1864 (2020) 129536. [Back]
  21. M. F. Chaplin,Structure and properties of water in its various states, Encyclopedia of Water: Science, Technology, and Society, Ed. P. A. Maurice, Wiley, (2019) doi: 10.1002/9781119300762.wsts0002. [Back]
  22. J. L. Wang and L. J. Xu, Advanced oxidation processes for wastewater treatment: Formation of hydroxyl radical and application, Critical Reviews in Environmental Science and Technology, 42 (2012) 251-325. [Back]
  23. A. Stefánsson, K. H. Lemke, P. Bénézeth and J. Schott, Magnesium bicarbonate and carbonate interactions in aqueous solutions: An infrared spectroscopic and quantum chemical study, Geochimica et Cosmochimica Acta, 198 (2017) 271-284. [Back]
  24. R. Brazil, The weirdness of water, Chemistry World, 17(4) (2020) 26-30. [Back]
  25. K. G. Nayar, D. Panchanathan, G. H. McKinley and J. H. Lienhard, Surface tension of seawater, Journal of Physical and Chemical Reference Data, 43 (2014) 043103; IAPWS G14-19, Guideline on the Surface Tension of Seawater (2019). [Back]  [Back to Top to top of page]
  26. A. M. Michałowska-Kaczmarczyk, A. Spórna-Kucab and T.Michałowski, Solubility products and solubility concepts, In T. Akitsu Ed. Descriptive Inorganic Chemistry Researches of Metal Compounds. IntechOpen, (2017) doi: 10.5772/67840. [Back]
  27. B. Kang, H. Tang, Z. Zhao and S. Song, Hofmeister Series: Insights of ion specificity from amphiphilic assembly and interface property, ACS Omega, (2020) doi: 10.1021/acsomega.0c00237. [Back, 2]
  28. T. Buchecker, P. Schmid, S. Renaudineau, O. Diat, A. Proust, A. Pfitzner and P. Bauduin, Polyoxometalates in the Hofmeister series, Chemical Communications, 54 (2018,) 1833-1836. [Back]
  29. Transition of the prion protein from a structured cellular form (PrPC) to the infectious scrapie agent (PrPSc), Protein Science, 28 (2019) 2055-2063. [Back]
  30. I. M. Chaudhari, J. M. Vanegas, L. R. Pratt, A. Muralidharan and S. B. Rempe, Hydration mimicry by membrane ion channels, Annual Review of Physical Chemistry, 71 (2020) 461-484; arXiv:1912.04102v1 [physics.chem-ph] 9 Dec 2019. [Back]
  31. O. B. Tarun, M. Yu. Eremchev, A. Radenovic and S. Roke, Spatiotemporal imaging of water in operating voltage-gated ion channels reveals the slow motion of interfacial ions, Nano Letters,  19 (2019) 7608-7613. [Back]
  32. C. Xiao, C. Chen, Y. Yao, H. Liu, L. Chen, L. Qian and S. H. Kim, Nanoasperity adhesion of silicon surface in humid air: the roles of surface chemistry and oxidized layer structure, Langmuir, (2020) Article in press; doi: 10.1021/acs.langmuir.0c00205. [Back]
  33. V. Belosludov, K. Gets, R. Zhdanov, V. Malinovsky, Y. Bozhko, R. Belosludov, N. Surovtsev, O. Subbotin and Y. Kawazoe, The nano-structural inhomogeneity of dynamic hydrogen bond network of TIP4P/2005 water, Scientific Reports, 10 (2020) 7323. [Back]
  34. A. J. Jadhav and M. Barigou, Proving and interpreting the spontaneous formation of bulk nanobubbles in aqueous organic solvent solutions: effects of solvent type and content, Soft Matter, (2020) Article in press, doi: 10.1039/D0SM00111B. [Back]
  35. J. C Flanagan, A. E. Cardenas and C. R Baiz, Ultrafast spectroscopy of lipid-water interfaces: Transmembrane crowding drives H-bond dynamics, The Journal of Physical Chemistry Letters, (2020) Article in press, doi: 10.1021/acs.jpclett.0c00783. [Back]
  36. J. D. Mason, M. T. Cone and E. S. Fry, Ultraviolet (250–550 nm) absorption spectrum of pure water, Applied Optics, 55 (2016) 7163-7172. [Back]
  37. S. Scheiner, Forty years of progress in the study of the hydrogen bond, Structural Chemistry, 30 (2019) 1119-1128; M. S. Taylor, Anion recognition based on halogen, chalcogen, pnictogen and tetrel bonding, Coordination Chemistry Reviews, 413 (2020) 213270. [Back]
  38. O. B. Tarun, H. I. Okur, P. Rangamani and S. Roke, Transient domains of ordered water induced by divalent ions lead to lipid membrane curvature fluctuations, Communications Chemistry, 3 (2020) 17. [Back]
  39. J. A. Riback, L. Zhu, M. C. Ferrolino, M. Tolbert, D. M. Mitrea, D. W. Sanders, M.-T. Wei, R. W. Kriwacki and C. P. Brangwynne, Composition-dependent thermodynamics of intracellular phase separation, Nature, (2020) Article in press, doi: 10.1038/s41586-020-2256-2; C. F. Lee, Complex condensations get cells organized, Nature, (2020) Article in press, doi: 10.1038/d41586-020-01280-1. [Back]
  40. Y. Xu, X. Xuan, Z. Zhang and W. Guo, Helical monolayer ice, The Journal of Physical Chemistry Letters, (2020) 3860-3865. [Back]
  41. H. Wennerström, E. V. Estrada, J. Danielsson and M. Oliveberg, Colloidal stability of the living cell, Proceedings of the National Academy of Sciences, 117 (2020) 10113-10121. [Back]
  42. X. Lang and K. Welsher, Mapping solvation heterogeneity in live cells by hyperspectral stimulated Raman scattering microscopy, Journal of Chemical Physics, 152 (2020) 174201. [Back]
  43. Y. Chen, C. Chen and A. K. Sum, Propane and water: The cooperativity of unlikely molecules to form clathrate structures, Journal of Physical Chemistry B, (2020) Article in press, doi: 10.1021/acs.jpcb.0c02675. [Back]
  44. (a) G. Cohen and H. Eisenberg, Light scattering of water, deuterium oxide, and other pure liquids, The Journal of Chemical Physics, 43 (1965) 3881-3887; (b) X. Zhang and L. Hu, Anomalous light scattering by pure seawater, Applied Sciences, 8 (2018) 2679. [Back]
  45. H. Eisenberg, Equation for the refractive index of water, The Journal of Chemical Physics, 43 (1965) 3887-3892. [Back]
  46. F. Tang, T. Ohto, S. Sun, J. R. Rouxel, S. Imoto, E. H. G. Backus, S. Mukamel, M. Bonn and Y. Nagata, Molecular structure and modeling of water−air and ice−air interfaces monitored by sum-frequency generation, Chemical Reviews, (2020) Article in press, doi: 10.1021/acs.chemrev.9b00512. [Back]
  47. S. Mahatabuddin, D. Fukami, T. Arai, Y. Nishimiya, R. Shimizu, C. Shibazaki, H. Kondo, M. Adachi and S.Tsuda, Polypentagonal ice-like water networks emerge solely in an activity-improved variant of ice-binding protein, Proceedings of the National Academy of Sciences, 115 (2018) 5456-5461. [Back]
  48. Y. Zeng, A. Li and T. Yan, Hydrogen bond dynamics in the solvation shell on proton transfer in aqueous solution, Journal of Physical Chemistry B, (2020) Article in press, doi: 10.1021/acs.jpcb.0c00990. [Back]
  49. V. Vinš, J. Hykl, J. Hrubý, A. Blahut, D. Celný, M. Čenský, and O. Prokopová, Possible anomaly in the surface tension of supercooled water: New experiments at extreme supercooling down to -31.4 °C, Journal of Physical Chemistry Letters, (2020) Article in press, doi: 10.1021/acs.jpclett.0c01163. [Back]
  50. M. Kanduč, E. Schneck, P. Loche, S. Jansen, H. J. Schenk and R. R. Netz, Cavitation in lipid bilayers poses strict negative pressure stability limit in biological liquids, Proceedings of the National Academy of Sciences, (2020) Article in press, doi: 10.1073/pnas.1917195117. [Back] [Back to Top to top of page]
  51. H. Elgabarty and T. D. Kühne, Tumbling with a limp: local asymmetry in water’s hydrogen bond network and its consequences, Physical Chemistry Chemical Physics, (2020) Article in press, doi: 10.1039/c9cp06960g. [Back]
  52. A. D. Biswas, V. Barone, A. Amadei and I. Daidone, Length-scale dependence of protein hydration-shell density, Physical Chemistry Chemical Physics, (2020) Article in press, doi: 10.1039/c9cp06214a. [Back]
  53. A. Henao, G. N. Ruiz, N. Steinke, S. Cerveny, R. Macovez, E. Guàrdia, S. Busch, S. E. McLain, C. D. Lorenz and L. C. Pardo, On the microscopic origin of the cryoprotective effect in lysine solutions, Physical Chemistry Chemical Physics, (2020) Article in press, doi: 10.1039/c9cp06192d. [Back]
  54. M. Duška, Water above the spinodal, The Journal of Chemical Physics, 152 (2020) 174501. [Back, 2, 3]
  55. B. M. Smirnov, Atmospheric processes involving condensed water, Physics of the Solid State, 62 (2020) 24-29. [Back]
  56. L. N. Dzhavadov, V. V. Brazhkin, Yu. D. Fomin, V. N. Ryzhov and E. N. Tsiok, Experimental study of water thermodynamics up to 1.2 GPa and 473 K, The Journal of Chemical Physics, 152 (2020) 154501. [Back, 2]
  57. P. Pal, S. Chakraborty and B. Jana, Deciphering the role of non-ice-binding surface on the antifreeze activity of hyperactive antifreeze proteins, Journal of Physical Chemistry B, (2020) Article in press, doi: 10.1021/acs.jpcb.0c01206. [Back]
  58. Y. Liu, T. J. Frankcombe and T. W. Schmidt, Visualizing the 30-dimensional eectronic structure of water: The emergence of lone pairs, Journal of Physical Chemistry Letters, (2020) Article in press, doi: 10.1021/acs.jpclett.9b03528. [Back]
  59. Y. Lee, Y.K. Lee, S.M. Jeong, A. Kumar and Y.S. Jho, Two local states of ambient water, Journal of the Korean Physical Society, 76 (2020) 1∼7. [Back]
  60. F. Sebastiani, A. V. Verde, M. Heyden, G. Schwaab and M. Havenith, Cooperativity and ion pairing in magnesium sulfate aqueous solutions from the dilute regime to the solubility limit, Physical Chemistry Chemical Physics, (2020) Article in press, doi: 10.1039/c9cp06845g. [Back]
  61. A. A. Fedorets, E. Bormashenko, L. A. Dombrovsky and M. Nosonovsky, Symmetry of small clusters of levitating water droplets, Physical Chemistry Chemical Physics, (2020) Article in press, doi: 10.1039/d0cp01804j. [Back]
  62. H. Xiao, L. Huang, W. Zhang, Z. Yin, Damage of Proteins at the air/water interface: Surface tension characterizes globulin interface stability, International Journal of Pharmaceutics, (2020) Article in press, doi: 10.1016/j.ijpharm.2020.119445. [Back]
  63. R. Yanes-Rodríguez, D. Arismendi-Arrieta and R. Prosmiti, He inclusion in ice-like and clathrate-like frameworks: a benchmark quantum chemistry study of guest-host interactions, Journal of Chemical Information and Modeling, (2020) Article in press. [Back]
  64. M. Matsumoto, T. Yagasaki and H.Tanaka, A Bayesian approach for identification of ice Ih, ice Ic, high density, and low density liquid water with a torsional order parameter, The Journal of Chemical Physics, 150 (2019) 214504. [Back]
  65. C. P. Berlinguette, Y.-M. Chiang, J. N. Munday, T. Schenkel, D. K. Fork, R. Koningstein and M. D. Trevithick, Revisiting the cold case of cold fusion, Nature, 570 (2019) 45-51; doi: 10.1038/s41586-019-1256-6. [Back]
  66. J. Paulino, M. Yi, I. Hung, Z. Gan, X. Wang, E. Y. Chekmenev, H.-X. Zhoug and T. A. Cross, Functional stability of water wire–carbonyl interactions in an ion channel, Proceedings of the National Academy of Sciences, 117 (2020) 11908-11915. [Back]
  67. J. Zhang and S. Ciampi, Shape and charge: Faraday’s ice pail experiment revisited, ACS Central Science, 6 (2020) 611-612. [Back]
  68. H. Zhang, Z. Guo and X. Zhang, Surface enrichment of ions leads to stability of bulk nanobubbles, Soft Matter, (2020) Article in press, doi: 10.1016/j.ijpharm.2020.119445. [Back]
  69. P. L. Chapovsky and A. A. Mamrashev, Anomalous ortho-to-para ratio of nuclear spin isomers of H2O at low temperatures, JETP Letters, 111 (2020) 85-89; from Russian published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 111 (2020) 75-79. [Back]
  70. K. Oka, T. Shibue, N. Sugimura, Y. Watabe, B. Winther-Jensen and H. Nishide, Supercooled low-entropy water clusters, Journal of Physical Chemistry Letters, (2020) Article in press, doi: 10.1021/acs.jpclett.0c00631. [Back]
  71. M. Sega, G. Horvai and P.Jedlovszky, Microscopic origin of the surface tension anomaly of water, Langmuir, 30 (2014) 2969-2972. [Back]
  72. A. Tuladhar, S. Dewan, S. Pezzotti, F. S. Brigiano, F. Creazzo, M.-P. Gaigeot and E. Borguet, Ions tune interfacial water structure and modulate hydrophobic interactions at silica surfaces, Journal of the American Chemical Society, 142 (2020) 6991-7000. [Back]
  73. J. Dedic, H. I. Okur and S. Roke, Polyelectrolytes induce water-water correlations that result in dramatic viscosity changes and nuclear quantum effects, Science Advances, 5 (2019) eaay1443. [Back]
  74. P. Siwach, E. Levy, L. Livshits, Y. Feldman and D. Kaganovich, Water is a biomarker of changes in the cellular environment in live animals, Scientific Reports, 10 (2020) 9095. [Back]
  75. S. S. Zhukov, V. Balos, G. Hoffman, S. Alom, M. Belyanchikov, M. Nebioglu, S. Roh, A. Pronin, G. R. Bacanu, P. Abramov, M. Wolf, M. Dressel, M. H. Levitt, R. J. Whitby, B. Gorshunov and M. Sajadi, Rotational coherence of encapsulated ortho and para water in fullerene-C60, (2020) https://arxiv.org/abs/2006.02687. [Back]  [Back to Top to top of page]
  76. G. K. Vallis, The trouble with water: condensation, circulation and climate, European Physics Journal Plus, (2020) doi:10.1140/epjp/s13360-020-00493-7; arXiv:2006.02364v1 [physics.ao-ph] 3 Jun 2020. [Back]
  77. X. Ma, C. Li, A. B. F. Martinson and G. A. Voth, Water assisted proton transport in confined nanochannels, (2020) arXiv:2006.01928 [cond-mat.soft]. [Back]
  78. M. F. Ruiz-López, M. T. C. Martins-Costa, J. M. Anglada and J. S. Francisco, A new mechanism of acid rain generation from HOSO at the air-water interface, Journal of the American Chemical Society, (2020) Article in press, doi: 10.1021/jacs.9b07912. [Back]
  79. L. E. Coronas, O. Vilanova, V. Bianco, F. de los Santos and G. Franzese, The Franzese-Stanley coarse grained model for hydrationh water, (2020) arxiv.org/abs/2004.03646. [Back, 2]
  80. T. Seki, C.-C. Yu, X. Yu, T. Ohto, S. Sun, K. Meister, E. H. G. Backus, M. Bonn and Y. Nagata, Decoding the molecular water structure at complex interfaces through surface-specific spectroscopy of the water bending mode, Physical Chemistry Chemical Physics, 22 (2020) 10934. [Back]
  81. J. R. Espinosa, J. A. Joseph, I. Sanchez-Burgos, A. Garaizar, D. Frenkel and R. Collepardo-Guevara, Liquid network connectivity regulates the stability and composition of biomolecular condensates with many components, Proceedings of the National Academy of Sciences, (2020) Article in press, doi: 10.1073/pnas.1917569117. [Back]
  82. M. Řezanka, Synthesis of cyclodextrin derivatives, In, S. Fourmentin, G, Crini and E, Lichtfouse, eds., Cyclodextrin fundamentals, reactivity and analysis, Springer International Publishing AG,, (2018) ISSN 2213-7114, pp 57-104. [Back]
  83. G. Crini, Review: A hstory of cyclodextrins, Chemical Reviews, 114 (2014) 10940-10975. [Back]
  84. V. P. Voronov, V. E. Podnek and M. A. Anisimov, High-resolution adiabatic calorimetry of supercooled water, Journal of Physics: Conference Series, 1385 (2019) 012008. [Back]
  85. J. M. Anglada, M. T. C. Martins-Costa, J. S. Francisco and M. F. Ruiz-López, Triplet state promoted reaction of SO2 with H2O by competition between proton coupled electron transfer (pcet) and hydrogen atom transfer (hat) processes, Physical Chemistry Chemical Physics, 21 (2019) 9779-9784. [Back]
  86. H. Sies and D. P. Jones, Reactive oxygen species (ROS) as pleiotropic physiological signalling agents, Nature Reviews Molecular Cell Biology, 21 (2020) 363-383. [Back]
  87. R. Yamane, K. Komatsu, J. Gouchi, Y. Uwatoko, S. Machida, T. Hattori, H. Ito and H. Kagi, New diversity form of ice polymorphism: Discovery of second hydrogen ordered phase of ice VI, https://arxiv.org/abs/2006.10928. [Back, 2, 3, 4]
  88. S. Kim, Z. Wu, E. Esmaili, J. J. Dombroskie and S. Jung, How a raindrop gets shattered on biological surfaces, Proceedings of the National Academy of Sciences, 117 (2020) 13901-13907. [Back]
  89. N. Ben Abu, P. E. Mason, H. Klein, N. Dubovski, Y. Ben Shoshan-Galeczki, E. Malach, V. Pražienková, L. Maletínská, C. Tempra, V. C. Chamorro, J. Cvačka, M.Behrens, M. Y. Niv and P. Jungwirth, Sweet taste of heavy water, (2020) bioRxiv preprint doi: 10.1101/2020.05.22.110205. [Back]
  90. Z. Pawlaka, W. Urbaniak and A. Oloyede, The relationship between friction and wettability in aqueous environment, Wear, 271 (2011) 1745-1749, doi: 10.1016/j.wear.2010.12.084. [Back]
  91. X. Guo, Y. Wang, Y. Qin, P. Shen and Q. Peng, Structures, properties and application of alginic acid: A review, International Journal of Biological Macromolecules, (2020) doi: 10.1016/j.ijbiomac.2020.06.180. [Back]
  92. L. A. Bagatolli, A. Mangiarotti and R. P. Stock, Cellular metabolism and colloids: Realistically linking physiology and biological physical chemistry. Progress in Biophysics and Molecular Biology, (2020) Article in press, doi: 10.1016/j.pbiomolbio.2020.06.002. [Back]
  93. J. W. Barnett, M. R. Sullivan, J. A. Long, D. Tang, T.Nguyen, D. Ben-Amotz, B. C. Gibb and H. S. Ashbaugh, Spontaneous drying of non-polar deep-cavity cavitand pockets in aqueous solution, Nature Chemistry , 12 (2020) 589-594; S. Garde, Sticky when dry, Nature Chemistry , 12 (2020) 584-588. [Back]
  94. W. Zhang, T. Turney, R. Meredith, Q. Pan, L. Sernau, X. Wang, X. Hu, R. J. Woods, I. Carmichael and A. S. Serianni, Conformational populations of β-(1-4) O-glycosidic linkages using redundant NMR J-couplings and circular statistics, The Journal of Physical Chemistry B , 121 (2017) 3042-3058; R. J. Meredith, R. J. Woods, I. Carmichael and A. S. Serianni, Reconciling MA'AT and molecular dynamics models of linkage conformation in oligosaccharides, Physical Chemistry Chemical Physics, (2020) Article in press, doi: 10.1039/d0cp01389g. [Back]
  95. C. Olsson and J. Swenson, Structural comparison between sucrose and trehalose in aqueous solution,The Journal of Physical Chemistry B , 124 (2020) 3074-3082. [Back]
  96. J. Zhong, C. Wang, X. C. Zeng and J. S. Francisco, Heterogeneous reactions of SO3 on ice: An overlooked sink for SO3 depletion, Journal of the American Chemical Society, (2020) Article in press, doi: 10.1021/jacs.9b11723. [Back]
  97. W. Aas, A.Mortier, V. Bowersox, R. Cherian, G. Faluvegi, H. Fagerli, J. Hand, Z. Klimont , C. Galy-Lacaux, C. M. B. Lehmann, C. L. Myhre, G. Myhre, D. Olivié, K. Sato, J. Quaas, P. S . P . Rao, M. Schulz, D. Shindell, R. B. Skeie, A. Stein, T. Takemura, S. Tsyro, R. Vet and X. Xu, Global and regional trends of atmospheric sulfur, Scientific Reports, 9 (2019) 953. [Back]
  98. C. N. Stachl and E. R. Williams, Effects of temperature on Cs+(H2O)2 clathrate structure, Journal of Physical Chemistry Letters, (2020) Article in press, doi: 10.1021/acs.jpclett.0c01554. [Back]
  99. N. Sakashita, H. Ishikita and K. Saito, Rigidly hydrogen-bonded water molecules facilitate proton transfer in photosystem II, Physical Chemistry Chemical Physics, (2020) Article in press, doi: 10.1039/d0cp00295j. [Back]
  100. J. M. Montes de Oca , F. Sciortino , and G. A. Appignanesi, A structural indicator for water built upon potential energy considerations, Journal of Chemical Physics, 152 (2020) 244503. [Back]



Home | Site Index | Site Map | Search | LSBU | Top

 

This page was established in 2020 and last updated by Martin Chaplin on 4 September, 2020


Creative Commons License
This work is licensed under a Creative Commons Attribution
-Noncommercial-No Derivative Works 2.0 UK: England & Wales License