Water site headerMasthead Island, Great Barrier Reef Print-me keygo to Water Visitor Book contributions
 Go to my page Water Structure and Science

Water Structure and Science, References 3901- 4000

 

  1. S. I. Koshoridze, Surface nanobubbles with fixed boundaries. Technical Physics Letters,  45 (2019) 576-579; doi: 10.1134/S1063785019060105. [Back]
  2. A. J. Jadhav and M. Barigou, Bulk nanobubbles or not nanobubbles: That is the question, Langmuir, 36 (2020) 1699-1708. [Back]
  3. E. D. Michailidi, G. Bomis, A. Varoutoglou, G. Z. Kyzas, G. Mitrikas, A. Ch. Mitropoulos, E. K. Efthimiadou and E. P Favvas, Bulk nanobubbles: production and investigation of their formation/stability mechanism, Journal of Colloid and Interface Science, 564 (2020) 371-380. [Back]
  4. L. Zhou, X. Wang, H.-J. Shin, J. Wang, r. tai, X. Zhang, H. Fang, W. Xiao, L.Wang, C.Wang, X. Gao, J. Hu and L. Zhang, Ultra-high density of gas molecules confined in surface nanobubbles in ambient water, Journal of the American Chemical Society, (2020) Article in press, doi: 10.1021/jacs.9b11303. [Back]
  5. M. Tikanmäki and P. Sainio, Experiments on friction of dry and wet ice, Cold Regions Science and Technology, 172 (2020) 102990. [Back]
  6. A. Arsiccio, J. McCarty, R. Pisano and J.-E. Shea, Heightened cold-denaturation of proteins at the ice-water interface, Journal of the American Chemical Society, (2020) Article in press, doi: 10.1021/jacs.9b13454. [Back]
  7. J. Munćan, J. Š. Rosić, I. Mileusnić, V. Matović, L. Matija and R. Tsenkova, The structure of water in soft contact lenses: near infrared spectroscopy and Aquaphotomics study, in Proceedings of the 18th Intnternational Conference on Near Infrared Spectroscopy, Ed. by S.B. Engelsen, K.M. Sørensen and F. van den Berg. IM Publications Open, Chichester, pp. 99–104 (2019). https://doi.org/10.1255/nir2017.099. [Back]
  8. H. Nada, Pathways for the formation of ice polymorphs from water predicted by a metadynamics method, Scientific Reports, 10 (2020) 4708. [Back]
  9. K. Komatsu, S. Klotz, S. Machida, A. Sano-Furukawa, T. Hattori and H. Kagi, Anomalous hydrogen dynamics of the ice VII–VIII transition revealed by high-pressure neutron diffraction, Proceedings of the National Academy of Sciences, (2020) Article in press, doi: 10.1073/pnas.1920447117. [Back]
  10. H. Kwon, J. Basran, J. M. Devos, R. Suardíaz, M. W. van der Kamp, A. J. Mulholland, T. E. Schrader, A. Ostermann, M. P. Blakeley, P. C. E. Moody, and E. L. Raven, Visualizing the protons in a metalloenzyme electron proton transfer pathway, Proceedings of the National Academy of Sciences, (2020) Article in press, doi: 10.1073/pnas.1918936117. [Back]
  11. Y.Nojima, Y.Shioya, H. Torii and S. Yamaguchi, Hydrogen order at the surface of ice Ih revealed by vibrational spectroscopy, Chemical Communications, (2020) Article in press, doi: 10.1039/d0cc00865f. [Back]
  12. J. Xu, J. Liu, J. Liu, W. Hu, X. He and J. Li, Phase transition of ice at high pressures and low temperatures, Molecules, 25 (2020) 486. [Back, 2]
  13. O. Piqué, F. Illas and F. Calle-Vallejo, Designing water splitting catalysts using rules of thumb: advantages, dangers and alternatives, Physical Chemistry Chemical Physics, (2020) Article in press, doi: 10.1039/d0cp00896f. [Back]
  14. P. Chettiyankandy, R. Ghosh and S. Chowdhuri, Effects of concentration and pressure on the aqueous solvation structure of ammonia and composition dependent ion solvation scenario in water-ammonia mixtures, Fluid Phase Equilibria, (2020), doi: https://doi.org/10.1016/j.fluid.2020.112507. [Back]
  15. H. Iyota and R. Krastev, Equilibrium thickness of foam films and adsorption of ions at surfaces: Water and aqueous solutions of sodium chloride, hydrochloric acid, and sodium hydroxide, Journal of Colloid and Interface Science, 565 (2020) 405-415. [Back]
  16. F. G. Quiroz, V. F. Fiore, J. Levorse, L. Polak, E. Wong, H. A. Pasolli and E. Fuchs, Liquid-liquid phase separation drives skin barrier formation, Science, 367 (2020) 1210. [Back]
  17. C. Wang, B. Zhou, Y. Tu, M. Duan, P. Xiu, J. Li and H. Fang, Critical dipole length for the wetting transition due to collective water-dipoles interactions, Scientific Reports, 2 (2012) 358. [Back]
  18. A. Sultana, J. Meesungnoen and J.-P. Jay-Gerin, Yields of primary species in the low-linear energy transfer radiolysis of water in the temperature range of 25–700 °C, Physical Chemistry Chemical Physics, (2020) Article in press, doi: 10.1039/d0cp00601g. [Back]
  19. G. L. Stephens, J. Li, M. Wild, C. A. Clayson, N. Loeb, S. Kato, T. L’Ecuyer, P. W. Stackhouse Jr, M. Lebsock and T. Andrews, An update on Earth’s energy balance in light of the latest global observations, Nature Geoscience, 5 (2012) 691-696. [Back]
  20. H. Nakagawa and M. Kataoka, Rigidity of protein structure revealed by incoherent neutron scattering, Biochimica et Biophysica Acta (BBA) - General Subjects, 1864 (2020) 129536. [Back]
  21. M. F. Chaplin,Structure and properties of water in its various states, Encyclopedia of Water: Science, Technology, and Society, Ed. P. A. Maurice, Wiley, (2019) doi: 10.1002/9781119300762.wsts0002. [Back]
  22. J. L. Wang and L. J. Xu, Advanced oxidation processes for wastewater treatment: Formation of hydroxyl radical and application, Critical Reviews in Environmental Science and Technology, 42 (2012) 251-325. [Back]
  23. A. Stefánsson, K. H. Lemke, P. Bénézeth and J. Schott, Magnesium bicarbonate and carbonate interactions in aqueous solutions: An infrared spectroscopic and quantum chemical study, Geochimica et Cosmochimica Acta, 198 (2017) 271-284. [Back]
  24. R. Brazil, The weirdness of water, Chemistry World, 17(4) (2020) 26-30. [Back]

 

Home | Site Index | Site Map | Search | LSBU | Top

 

This page was established in 2020 and last updated by Martin Chaplin on 4 April, 2020


Creative Commons License
This work is licensed under a Creative Commons Attribution
-Noncommercial-No Derivative Works 2.0 UK: England & Wales License