Water site headerMasthead Island, Great Barrier Reef Print-me keygo to Water Visitor Book contributions
Go to my page Water Structure and Science

Water Structure and Science References 501 - 600


  1. (a) M. Matsuo, T. Tanaka, L. Ma, Gelation mechanism of agarose and k-carrageenan solutions estimated in terms of concentration fluctuation, Polymer 43 (2002) 5299-5309. This paper has been questioned (b) M. Roy and S. Chakraborty, Comment on 'gelation mechanism of agarose and k-carrageenan solutions estimated in terms of concentration fluctuation [Polym 2002;43:5299]', Polymer 46 (2005) 3535-3537; and supported (c) M. Matsuo, Reply to the paper ' Comment on Gelation mechanism of agarose and k-carrageenan solutions estimated in terms of concentration fluctuation' [Polym 2002;43:5299], Polymer 46 (2005) 3538. [Back]
  2. R. Chandrasekaran and A. Radha, Molecular architectures and functional properties of gellan gum and related polysaccharides, Trends Food Sci. 6 (1995) 143-148. [Back]
  3. C. T. Chuah, A. Sarko, Y. Deslandes and R. H. Marchessault, Triple helical crystalline structure of curdlan and paramylon hydrates, Macromolecules 16 (1983) 1375-1382. K. Miyoshi, K. Uezu, K. Sakurai and S. Shinkai, Inter-chain and arrayed hydrogen bonds in β-1,3-D-xylan triple helix predicted by quantum mechanics calculation, Carbohydr. Polymers 66 (2006) 352-356. [Back]
  4. T. Funami and K. Nishinari, Gelling characteristics of curdlan aqueous dispersions in the presence of salts, Food Hydrocolloids 21 (2007) 59-65. [Back]
  5. K. F. Kelton, G. W. Lee, A. K. Gangopadhyay, R. W. Hyers, T. J. Rathz, J. R. Rogers, M. B. Robinson and D. S. Robinson, First X-ray scattering studies on electrostatically levitated metallic liquids: Demonstrated influence of local icosahedral order on the nucleation barrier, Phys. Rev. Lett. 90 (2003) 195504; C. Day, Experiments vindicate a 50-year-old explanation of how liquid metals resist solidification, Physics Today 56 (2003) 24. [Back]
  6. P. Attard, Nanobubbles and the hydrophobic attraction, Adv. Colloid Interface Sci. 104 (2003) 75-91. [Back, 2, 3]
  7. M. N. Rodnikova, A new approach to the mechanism of solvophobic interactions, J. Mol. Liq. 136 (2007) 211-213. [Back, 2]
  8. K. C. Labropoulos, D. E. Niesz, S. C. Danforth and P. G. Kevrekidis, Dynamic rheology of agar gels: theory and experiment. Part I. Development of a rheological model, Carbohydr. Polym. 50 (2002) 393-406. [Back]
  9. (a) B. Vybíral and P. Vorácek, "Autothixotropy" of water - an unknown physical phenomenon, arXiv.org Physics e-Print archive physics/0307046 (2003). (b) B. Vybíral, The comprehensive experimental research on the autothixotropy of water, In Water and the cell, Ed. G. H. Pollack, I. L. Cameron and D. N. Wheatley (Springer, Dordrecht, 2006) pp. 299-314. (c) B. Vybíral and P. Voráček, Long term structural effects in water: Autothixotropy of water and its hysteresis, Homeopathy 96 (2007) 171-182. (d) A, P. Gaylard, Going beyond the evidence, Homeopathy 97 (2008) 46. (e) B. Vybíral and P. Voráček, Response to Adrian Gaylard: Going beyond the evidence, Homeopathy 97 (2008) 47. [Back, 2, 3, 4]
  10. I. A. Ar'ev and N. I. Lebovka, Temperature dependence of phenanthrene cavity radius in apolar solvents and in water, arXiv.org Physics e-Print archive cond-mat/0306385 (2003). [Back]
  11. M-L. Tan, J. T. Fischer, A. Chandra, B. R. Brooks and T. Ichiye, A temperature of maximum density in soft sticky dipole water, Chem. Phys. Lett. 376 (2003) 646-652. [Back]
  12. P. K. Weissenborn and R. J. Pugh, Surface tension of aqueous solutions of electrolytes: relationship with ion hydration, oxygen solubility, and bubble coalescence, J. Colloid Interface Sci. 184 (1996) 550-563. [Back]
  13. R. Maheshwari, K. J. Sreeram and A. Dhathathreyan, Surface energy of aqueous solutions of Hofmeister electrolytes at air/liquid and solid/liquid interface, Chem. Phys. Lett. 375 (2003) 157-161. [Back]
  14. A. W. Omta, M. F. Kropman, S. Woutersen and H. J. Bakker, Negligible effect of ions on the hydrogen-bond structure in liquid water, Science 301 (2003) 347-349. [Back]
  15. J. K. Borchardt, The chemical formula H2O - a misnomer, The Alchemist 8 Aug (2003). [Back]
  16. M. R. Mangione, D. Giacomazza, D. Bulone, V. Martorana and P. L. San Biagio, Thermoreversible gelation of k-carrageenan: relation between conformational transition and aggregation, Biophys. Chem. 104 (2003) 95-105. [Back]
  17. T. Miyake and M. Aida, Hydrogen bonding patterns in water clusters: trimer, tetramer and pentamer, Internet Electron. J. Mol. Design. 2 (2003) 24-32. [Back]
  18. F. Vaslow, Salt-induced critical-type transitions in aqueous solution. Heats of dilution of the lithium and sodium halides, J. Phys. Chem. 75 (1971) 3317-3321. [Back]
  19. J. Yang, J. Duan, D. Fornasiero and J. Ralston, Very small bubble formation at the solid-water interface, J. Phys. Chem. B 107 (2003) 6139-6147. [Back]
  20. V. R. Belosludov, T. M. Inerbaev, R. V. Belosludov, J. Kudoh and Y. Kawazoe, Absolute stability boundaries of clathrate hydrates of cubic structure II, J. Supramol. Chem. 2 (2002) 377-383; L. C. Jacobson, W. Hujo and V. Molinero, Thermodynamic stability and growth of guest-free clathrate hydrates: a low-density crystal phase of water, J. Phys. Chem. B 113 (2009) 10298-10307. [Back, 2]
  21. M. Boström, D. R. M. Williams and B. W. Ninham, Specific ion effects: Why the properties of lysozyme in salt solutions follow a Hofmeister series, Biophys. J. 85 (2003) 686-694. [Back]
  22. G. Karlström, On the effective interaction between an ion and a hydrophobic particle in polar solvents. A step towards an understanding of the Hofmeister effect? Phys. Chem. Chem. Phys. 5 (2003) 3238-3246. [Back]
  23. R. Ludwig, How does water bind to metal surfaces: Hydrogen atoms up or hydrogen atoms down? Angew. Chem. Int. Ed. 42 (2003) 3458-3460. [Back]
  24. A. Fernández and H. A. Scheraga, Insufficiently dehydrated hydrogen bonds as determinants of protein interactions, PNAS 100 (2003) 113-118. [Back]
  25. A. Ranganathan, G. U. Kulkarni and C. N. R. Rao, Understanding the hydrogen bond in terms of the location of the bond critical point and the geometry of the lone pairs, J. Phys. Chem. A 107 (2003) 6073-6081. [Back] [Back to Top to top of page]
  26. A. A. Yakovenko, V. A. Yashin, A. E. Kovalev and E. E. Fesenko, Structure of the vibrational absorption spectra of water in the visible region, Biophysics 47 (2002) 891-895. [Back]
  27. E. Ernst, A systematic review of systematic reviews of homeopathy, J. Clin. Pharmacol. 54 (2002) 577-582. [Back]
  28. S. N. Timasheff and G. Xie, Preferential interactions of urea with lysozyme and their linkage to protein denaturation, Biophys. Chem. 105 (2003) 421-448. [Back]
  29. L. Lavelle and J. R. Fresco, Stabilization of nucleic acid triplexes by high concentration of sodium and ammonium salts follows the Hofmeister series, Biophys. Chem. 105 (2003) 681-699. [Back]
  30. J. D. Worley and I. M. Klotz, Near-infrared spectra of H2O-D2O solutions, J. Chem. Phys. 45 (1966) 2868-2871. G. E. Walrafen, M. S. Hokmabadi and W. H. Yang, Raman isosbestic points from liquid water, J. Chem. Phys. 85 (1986) 6964-6969. [Back]
  31. A. Morozov, Avogadro's number and homeopathy, Homœopathic Links 16 (2003) 97-100. [Back]
  32. A. N. Troganis, C. Tsanaktsidis and I. P. Gerothanassis, 14N NMR relaxation times of several protein amino acids in aqueous solution – comparison with 17O NMR data and estimation of the relative hydration numbers in the cationic and zwitterioinic forms, J. Magn. Reson. 164 (2003) 294-303. [Back]
  33. Q. Sun, H. Zheng, J. Xu and E. Hines, Raman spectroscopic studies of the stretching band from water up to 6 kbar at 290 K. Chem. Phys. Lett. 379 (2003) 427-431. [Back, 2, 3]
  34. K. E. Bett and J. B. Cappi, Effect of pressure on the viscosity of water, Nature 207 (1965) 620-621. T. DeFries and J. Jonas, Pressure dependence of NMR proton spin–lattice relaxation times and shear viscosity in liquid water in the temperature range –15–10 °C, J. Chem. Phys. 66 (1977) 896-901. [Back]
  35. A. D. Molina-García, L. Otero, M. N. Martino, N. E. Zaritzky, J. Arabus, J. Szczepek and P. D. Sanz, Ice VI freezing of meat: supercooling and ultrastructural studies, Meat Sci. 66 (2004) 709-718. [Back, 2]
  36. L. A.Guildner, D. P. Johnson, and F. E. Jones, Vapor pressure of water at its triple point, J. Res. Nat. Bur. Stand. 80A (1976) 505-521; K. Bielska, D. K. Havey, G. E. Scace, D. Lisak, A. H. Harvey and J. T. Hodges, High-accuracy measurements of the vapor pressure of ice referenced to the triple poin, Geophys. Res. Lett. 40, (2013) 6303-6307. [Back, 2]
  37. IAPWS R14-08(2011), Revised release on the pressure along the melting and sublimation curves of ordinary water substance, http://www.iapws.org/relguide/MeltSub2011.pdf, (accessed 23 January 2017); P. W. Bridgman, Water, in the liquid and five solid forms, under pressure, Proc. Am. Acad. Arts Sci. 47 (1912) 439-558. [Back]
  38. M. Song, H. Yamawaki, H. Fujihisa, M. Sakashita and K. Aoki, Infrared investigation on ice VIII and the phase diagram of dense ices, Phys. Rev. B 68 (2003) 014106. [Back]
  39. L. Mercury, P. Vieillard and Y. Tardy, Thermodynamics of ice polymorphs and `ice-like' water in hydrates and hydroxides, Appl. Geochem. 16 (2001) 161-181. [Back]
  40. M. P. Verma, Steam tables for pure water as an ActiveX component in Visual Basic 6.0, Computers Geosci. 29 (2003) 1155-1163. [Back, 2, 3, 4, 5, 6, 7]
  41. D. Asthagiri, L. R. Pratt, J. D. Kress and M. A. Gomez, The hydration state of OH-(aq), Chem. Phys. Lett. 380 (2003) 530-535. [Back]
  42. V. Makarov, B. K. Andrews, P. E. Smith and B. M. Pettitt, Residence times of water molecules in the hydration sites of myoglobin, Biophys. J. 79 (2000) 2966-2974. V. Makarov, B. M. Pettitt and M. Feig, Solvation and hydration of proteins and nucleic acids: A theoretical view of simulation and experiment, Acc. Chem. Res. 35 (2002) 376-384. [Back, 2]
  43. F. Migliardo, V. Magazù and M. Migliardo, INS investigation on disaccharide/H2O mixtures, J. Mol. Liq. 110 (2003) 11-13. [Back]
  44. P. E. Mason, J. M. Cruikshank, G. W. Neilson and P. Buchanan, Neutron scattering studies on the hydration of phosphate ions in aqueous solution of K3PO4, K2HPO4 and KH2PO4, Phys. Chem. Chem. Phys. 5 (2003) 4686-4690. [Back]
  45. E. Spinner, Raman-spectral depolarisation ratios of ions in concentrated aqueous solution. The next-to-negligible effect of highly asymmetric ion surroundings on the symmetry properties of polarisability changes during vibrations of symmetric ions.: Ammonium sulphate and tetramethylammonium bromide, Spectrochim. Acta, Part A 59 (2003) 1441-1456. [Back]
  46. J. G. Watterson, The role of water in cell architecture, Mol. Cell. Biochem. 79 (1988) 101-105. J. G. Watterson, The pressure pixel - unit of life? BioSystems 41 (1997) 141-152. [Back, 2]
  47. A. Müller and M. Henry, Nanocapsule water-based chemistry, Compt. Rend. Chim. 6 (2003) 1201-1208. [Back, 2]
  48. M. Henry, Nonempirical quantification of molecular interactions in supramolecular assemblies, ChemPhysChem 3 (2002) 561-569. [Back]
  49. J. G. Watterson, A model linking water and protein structure, BioSystems 22 (1988) 51-54. [Back]
  50. (a) D. T. Bowron, J. L Finney, Structure of a salt-amphiphile-water solution and the mechanism of salting out. J. Chem. Phys. 118 (2003) 8357-8372. (b) J. L Finney and D. T. Bowron, Anion bridges and salting out, Curr. Opin. Colloid Interface Sci. 9 (2004) 59-63. (c) D. Paschek, A. Geiger, M. J. Hervé, and D. Suter, Adding salt to an aqueous solution of t-butanol: Is hydrophobic association enhanced or reduced? arXiv:cond-mat/0507529 v1 (2005). [Back] [Back to Top to top of page]
  51. A Dias Tavares, The Costa Ribeiro effect and allied phenomena, J. Mol. Liq. 39 (1988) 171-194. [Back, 2]
  52. J-B. Cazier and V. Gekas, Water activity and its prediction: a review, Int. J. Food Prop. 4 (2001) 35-43. [Back]
  53. L. H. Pope, M. W. Shotton, V. T. Forsyth, P. Langan, R. C. Denny, U. Giesen, M. T. Dauvergne and W. Fuller, Ordered water around deuterated A-DNA by neutron fibre diffraction, Physica B 241-243 (1998) 1156-1158. [Back]
  54. B. Chen, I. Ivanov, M. L. Klein and M. Parrinello, Hydrogen bonding in water, Phys. Rev. Lett. 91 (2003) 215503. [Back, 2]
  55. Y. I. Cho, S. H. Lee and W. Kim, Physical water treatment for the mitigation of mineral fouling in cooling-tower water applications, ASHRAE Trans. 109 (2003) 346-357, (but differing results are given in Y. I. Cho, S. H. Lee, W. Kim and S. Suh, Physical water treatment for the mitigation of mineral fouling in cooling-tower water applications, 2003 ECI Conference on Heat Exchanger Fouling and Cleaning: Fundamentals and Applications, Santa Fe, New Mexico, USA, Ed. P. Watkinson, H. Müller-Steinhagen and M. R. Malayeri (2004) Paper 4). [Back]
  56. S. R. Dillon and R. C. Dougherty, NMR evidence of weak continuous transitions in water and aqueous electrolyte solutions, J. Phys. Chem. A 107 (2003) 10217-10220. [Back, 2]
  57. A. M. Sereno, M. D. Hubinger, J. F. Comesaña and A. Correa, Prediction of water activity of osmotic solutions, J. Food Eng. 49 (2001) 103-114. [Back]
  58. H. Tanaka, A new scenario of the apparent fragile-to-strong transition in tetrahedral liquids: water as an example, J. Phys.: Condens. Matter 15 (2003) L703-L711. [Back, 2, 3]
  59. M. Jarvis, Cellulose stacks up, Nature 426 (2003) 611-612. Y. Nishiyama, P. Langan and H. Chanzy, Crystal structure and hydrogen-bonding system in cellulose 1β from synchrotron X-ray and neutron fiber diffraction, J. Am. Chem. Soc. 124 (2002) 9074-9082. Y. Nishiyama, J. Sugiyama, H. Chanzy and P. Langan, Crystal structure and hydrogen bonding system in cellulose 1α, from synchrotron X-ray and neutron fiber diffraction, J. Am. Chem. Soc. 125 (2003) 14300-14306. [Back]
  60. V. D. Zelepukhin, I. D. Zelepukhin and V. V. Krasnoholovets, Thermodynamic features and molecular organization of degassed aqueous system, Khim. Fiz. 12 (1993) 992-1005; translated in Sov. Jnl. Chem. Phys. 12 (1994) 1461-1484. [Back]
  61. G. M. Marion and S. D. Jakubowski, The compressibility of ice to 2.0 kbar, Cold Regions Sci. Tech. 38 (2004) 211-218. [Back, 2]
  62. D. Verbeken, S. Dierckx and K. Dewettinck, Exudate gums: occurence, production, and applications, Appl. Microbiol. Biotechnol. 63 (2003) 10-21. [Back]
  63. P. Cabral do Couto, S. G. Estácio, and B. J. Costa Cabrala, The Kohn-Sham density of states and band gap of water: From small clusters to liquid water, J. Chem. Phys. 123 (2005) 054510. [Back]
  64. (a) K. G. Libbrecht and K. Lui, An Investigation of Laboratory-Grown "Ice Spikes"; (2003), V. Jamieson, Freezer teaser, New Scientist 180(2426/7/8) (2003) 38-39. (b) D. Mills and K. W. Kolasinski, Solidification driven extrusion of spikes during laser melting of silicon pillars, Nanotechnology 17 (2006) 2741-2744. [Back]
  65. D. R. White and W. L Tew, Evaluation of the depression constants for D and 18O isotopes for the triple point temperature of water, http://www.bipm.fr/cc/CCT/Allowed/22/CCT03-21.pdf (2003). [Back]
  66. J. Neuefeind, C. J. Benmore, B. Tomberli and P. A. Egelstaff, Experimental determination of the electron density of liquid H2O and D2O, J. Phys.: Condens. Matter 14 (2002) L429-L433. [Back]
  67. D. J. Anick, Application of database methods to the prediction of B3LYP-optimized polyhedral water cluster geometries and electronic energies, J. Chem. Phys. 119 (2003) 12442-12456 [Back]
  68. E. Trinh and R. E. Apfel, Sound velocity of supercooled water down to -33 °C using acoustic levitation, J. Chem. Phys. 72 (1980) 6731-6735. [Back]
  69. P. G. Debenedetti, Supercooled and glassy water, J. Phys.: Condens. Matter 15 (2003) R1669-R1726. R. J. Speedy, Comment on 'Supercooled and glassy water', J. Phys.: Condens. Matter 16 (2004) 6811-6813. P. G. Debenedetti, Reply to comment on 'Supercooled and glassy water', J. Phys.: Condens. Matter 16 (2004) 6815-6817. [Back, 2]
  70. N. J. English and J. M. D. MacElroy, Hydrogen bonding and molecular mobility in liquid water in external electromagnetic fields, J. Chem. Phys. 119 (2003) 11806-11813. [Back]
  71. P. E. Mason, G. W. Neilson, J. E. Enderby, M. L. Saboungi, L E. Dempsey, A. D. MacKerell Jr and J. W. Brady, The structure of aqueous guanidinium chloride solutions. J. Am. Chem. Soc. 22 (2004) 11462-70. [Back]
  72. G. A. Martynov, Structure of fluids from the statistical mechanics point of view, J. Mol. Liq. 106 (2003) 123-130. [Back]
  73. N. A. Chumaevskii and M. N. Rodnikova, Some peculiarities of liquid water structure, J. Mol. Liq. 106 (2003) 167-177. [Back, 2, 3]
  74. P. M. Wiggins, Enzyme reactions and two-state water, J. Biol. Phys. Chem. 2 (2002) 25-37. P. M. Wiggins, Methods for the separation of isomers, United States Patent 6,638,360 (2003). [Back]
  75. G. Dervilly-Pinel, V. Tran and L. Saulnier, Investigation of the distribution of arabinose residues on the xylan backbone of water-soluble arabinoxylans from wheat flour, Carbohydr. Polym 55 (2004) 171-177. [Back] [Back to Top to top of page]
  76. (a) C. Branca, S. Magazù, F. Migliardo and G. Romeo, Water poly(ethylene glycol) coordination by rheological and acoustic data, J. Mol. Liq. 103-104 (2003) 181-185. (b) T. Shikata, R. Takahashi and A. Sakamoto, Hydration of poly(ethylene oxide)s in aqueous solution as studied by dielectric relaxation measurements, J. Phys. Chem. B 110 (2006) 8941-8945. [Back]
  77. F. Bartha, O. Kapuy, C. Kozmutza and C. Van Alsenoy, Analysis of weakly bound structures: hydrogen bond and the electron density in a water dimer, J. Mol. Struct. (Theochem) 666-667 (2003) 117-122. [Back]
  78. H. Wennerström, Influence of dissolved gas on the interaction between hydrophobic surfaces in water, J. Phys. Chem. B 107 (2003) 13772-13773. [Back]
  79. W-B. Ko, J-Y. Heo, J-H. Nam and K-B. Lee, Synthesis of a water-soluble fullerene [C60] under ultrasonication, Ultrasonics 41 (2004): 727-730. [Back]
  80. R. C. Dougherty, The PVT surface of water: critical phenomena near 0.195 GPa, 182 K. Chem. Phys. 298 (2004) 307-315. [Back, 2, 3]
  81. E. Tiezzi, NMR evidence of a supramolecular structure of water, Annali di Chimica 93 (2003) 471-476. [Back, 2]
  82. A. Vegiri, Reorientational relaxation and rotational-translational coupling in water clusters in a d.c. external electric field, J. Mol. Liq. 110 (2004 )155 –168. [Back]
  83. M. H. Stirling and K. C. Parsons, A model of human water balance, J. Therm. Biol. 25 (2000) 187-190. [Back]
  84. V. Tolstoguzov, Why are polysaccharides necessary? Food Hydrocolloids 18 (2004) 873-877. [Back]
  85. C. Kozmutza, I. Varga and L. Udvardi, Comparison of the extent of hydrogen bonding in H2O-H2O and H2O-CH4 systems, J. Mol. Structure (Theochem), 666-667 (2003) 95-97. [Back]
  86. A. Tongraar and B. M. Rode, Dynamical properties of water molecules in the hydration shells of Na+ and K+: ab initio QM/MM molecular dynamics simulations, Chem. Phys. Lett. 385 (2004) 378-383. [Back]
  87. A. Wakisaka and Y. Yamamoto, Microscopic cluster structure of binary mixed solutions: water-methanol and water-acetonitrile. Structure and Thermodynamics of Solvents and Solutions, European Molecular Liquid Group Annual Meeting, Balatonfüred, Hungary, (1996). [Back]
  88. W. J. Ellison, K. Lamkaouchi and J.-M. Moreau, Water: A dielectric reference, J. Mol. Liq. 68 (1996) 171-279. The graphed data was derived from X. Hu, H. A. Buckmaster and O. Barajas, The 9.355 GHz complex permittivity of light and heavy water from 1° to 90 °C, J. Chem. Eng. Data 39 (1994) 625-635, and D. Bertolini, M. Cassettari and G. Salvetti, The dielectric relaxation time of supercooled water, J. Chem. Phys. 76 (1982) 3285-3290. [Back, 2]
  89. J. Underwood and C. Wittig, Two photon photodissociation of H2O via the B state, Chem. Phys. Lett. 386 (2004) 190-195. [Back]
  90. B. Guillot and Y. Guissani, Polyamorphism in low temperature water: A simulation study, J. Chem. Phys. 119 (2003) 11740-11752. [Back]
  91. H. Tachikawa, Electron capture dynamics of the water dimer: a direct ab initio dynamics study, Chem. Phys. Lett. 370 (2003) 188-196. [Back]
  92. A. J. Lock and H. J. Bakker, Temperature dependence of vibrational relaxation in liquid H2O, J. Chem. Phys, 117 (2002) 1708-1713. [Back]
  93. S. Jobling, Improved starch for food and industrial applications, Curr. Opin. Plant Biol. 7 (2004) 210-218. [Back]
  94. (a) I-F. W. Kuo and C. J. Mundy, An ab initio molecular dynamics study of the aqueous liquid-vapor interface, Science 303 (2004) 658-660; (b) D. Marx, Throwing tetrahedral dice, Science 303 (2004) 634-636. [Back, 2]
  95. J. D. Batchelor, A. Olteanu, A. Tripathy and G. J. Pielak, Impact of protein denaturants and stabilizers on water structure, J. Am. Chem. Soc. 126 (2004) 1958-1961. [Back]
  96. F. Corzana, M. S. Motawia, C. Hervé du Penhoat, S. Perez, S. M. Tschampel, R. J. Woods and S. B. Engelsen, A hydration study of (1->4) and (1->6) linked α-glucans by comparative 10 ns molecular dynamics simulations and 500-MHz NMR, J. Comput. Chem. 25 (2004) 573-586. [Back]
  97. G. Tubio, B. Nerli and G. Picó, Relationship between the protein surface hydrophobicity and its partioning behaviour in aqueous two-phase systems of polyethyleneglycol-dextran, J. Chromatogr. B 799 (2004) 293-301. [Back]
  98. B. Farruggia, B. Nerli and G. Picó, Study of the serum albumin-polyethyleneglycol interaction to predict the protein partitioning in aqueous two-phase systems, J. Chromatogr. B 798 (2003) 25-33. [Back]
  99. Y. H. Tsang, Y-H. Koh and D. L. Koch, Bubble-size dependence of the critical electrolyte concentration for inhibition of coalescence, J. Colloid Interface Sci. 275 (2004) 290-297. [Back]
  100. Y. I. Jhon, H. G. Kim and M. S. Jhon, Equilibrium between two liquid structures in water: explicit representation via significant liquid structure theory, J. Mol. Liq. 111 (2004) 141-149. [Back, 2] [Back to Top to top of page]




Home | Site Index | Site Map | Search | LSBU | Top


This page was established in 2003 and last updated by Martin Chaplin on 15 August, 2017

Creative Commons License
This work is licensed under a Creative Commons Attribution
-Noncommercial-No Derivative Works 2.0 UK: England & Wales License