Water site headerMasthead Island, Great Barrier Reef Print-me keygo to Water Visitor Book contributions
Go to my page Water Structure and Science

Water Structure and Science References 701 - 800

 

  1. J. Yang, S. Meng, L. F. Xu and E. G. Wang, Ice tesselation on a hydroxylated silica surface, Phys. Rev. Lett. 92 (2004) 146102. [Back]
  2. T. Yokomizo, M. Nakasako, T. Yamazaki, H. Shindo and J. Higo, Hydrogen-bond patterns in the hydration structure of a protein, Chem. Phys. Lett. 401 (2005) 332-336. T. Yokomizo, J. Higo and M. Nakasako, Patterns and networks of hydrogen-bonds in the hydration structure of human lysozyme, Chem. Phys. Lett. 410 (2005) 31-35. [Back]
  3. H. Inaba, T. Saitou, K. Tozaki, and H. Hayashi, Effect of the magnetic field on the melting transition of H2O and D2O measured by a high resolution and supersensitive differential scanning calorimeter , J. Appl. Phys. 96 (2004) 6127-6132. [Back]
  4. H. Yu and W. F. van Gunsteren, Charge-on-spring polarizable water models revisited: from water clusters to liquid water to ice, J. Chem. Phys. 121 (2004) 9549-9564. [Back, 2]
  5. Y. Toshimura, H. Mao and R. J. Hemley, Transformation of ice in aqueous KCl solution to a high-pressure, low temperature phase, Chem. Phys. Lett. 400 (2004) 511-514. [Back]
  6. H. Kanno and C. A. Angell, Water: Anomalous compressibilities to 1.9 kbar and correlation with supercooling limits, J. Chem. Phys. 70 (1979) 4008-4016. [Back]
  7. C. H. Spink and J. B. Chaires, Effects of hydration, ion release, and excluded volume on the melting of triplex and duplex DNA, Biochemistry 38 (1999) 496-508. [Back]
  8. E. Rozners and J. Moulder, Hydration of short DNA, RNA and 2'-OMe oligonucleotides determined by osmotic stressing, Nucleic Acids Res. 32 (2004) 248-254; Corrigendum, Nucleic Acids Res. 32 (2004) 6153. [Back]
  9. J. M. Hermida-Ramón and G.Karlström, Study of the hydronium ion in water, A combined quantum chemical and statistical mechanical treatment, J. Mol. Struct. Theochem 712 (2004) 167-173. [Back]
  10. P. Pesic, The sky is falling: Newton's droplets, Clausius's bubbles and Tyndall's 'sky matter', Eur. J. Phys. 26 (2005) 189-193. [Back]
  11. (a) R. M. Pashley, M. Rzechowicz, L. R. Pashley and M. J. Francis, De-gassed water Is a better cleaning agent, J. Phys. Chem. B 109 (2005) 1231-1238. (b) M. J. Francis, N. Gulati and R. M. Pashley, The dispersion of natural oils in de-gassed water, J. Colloid Interface Sci. 299 (2006) 673-677. (c) R. M. Pashley, M. J. Francis and M. Rzechowicz, The hydrophobicity of non-aqueous liquids and their dispersion in water under de-gassed conditions, Curr. Opin. Colloid Interface Sci. 13 (2008) 236-244. [Back, 2, 3, 4, 5, 6, 7]
  12. D. J. Anick, High sensitivity 1H-NMR spectroscopy of homeopathic remedies made in water, BMC Complement. Alt. Med. 4:15 (2004). [Back]
  13. X. Yu and D. M. Leitner, Thermal transport in liquid and glassy water computed with normal modes, Chem. Phys. Lett. 398 (2004) 480-485. [Back]
  14. M. Barteri, A. Pala and S. Rotella, Structural and kinetic effects of mobile phone microwaves on acetylcholin-esterase activity, Biophys. Chem. 113 (2005) 245-253. [Back]
  15. J. C. Dore, M. Garawi and M.-C. Bellissent-Funel, Neutron diffraction studies of the structure of water at ambient temperatures, revisited [a review of past developments and current problems, Mol. Phys. 102 (2004) 2015-2035. [Back]
  16. W. M. Jones, The triple point temperature of tritium oxide, J. Am. Chem. Soc. 74 (1952) 6065-6066. [Back]
  17. V. F. Petrenko and R. W. Whitworth, Physics of ice (Oxford University Press, Oxford, 1999). [Back, 2, 3, 4]
  18. J. Urquidi, C. J. Benmore, P. A Egelstaff , M.Guthrie, S. E. McLain, C. A. Tulk, D. D. Klug and J. F. C. Turner, A structural comparison of supercooled water and intermediate density amorphous ices, Mol. Phys. 102 (2004) 2007-2014. [Back]
  19. R. J. Hemley, A. P. Jephcoat, H. K. Mao, C. S. Zha, L. W. Finger and D. E. Cox, Static compression of H2O-ice to 128 GPa (1.28 Mbar). Nature 330 (1987) 737-740. [Back]
  20. S. J. Schmidt, Water and solids mobility in foods, Adv. Food Nutr. Res. 48 (2004) 1-101. [Back]
  21. T. C. Davidson, R. H. Newman and M. J. Ryan, Variations in the fibre repeat between samples of cellulose I from different sources, Carbohydr. Res. 339 (2004) 2889-2893. [Back]
  22. (a) E. E. Meyer, Q. Lin and J. N. Israelachvili, Effects of dissolved gas on the hydrophobic attraction between surfactant-coated surfaces, Langmuir 21 (2005) 256-259; (b) H. Stevens, R. F. Considine, C. J. Drummond, R. A. Hayes and P. Attard, Effects of degassing on the long-range attractive force between hydrophobic surfaces in water, Langmuir 21 (2005) 6399-6405; (c) E. E. Meyer, K. J. Rosenberg and J. Israelachvili, Recent progress in understanding hydrophobic interactions, PNAS, 103 (2006) 15739-15746. [Back]
  23. M. R. Mangione, D. Giacomazza, D. Bulone, V. Martorana, G. Cavallaro and P.L. San Biagio, K+ and Na+ effects on the gelation properties of κ-carrageenan, Biophys. Chem. 113 (2005) 129-135. [Back]
  24. B. J. Yoon, Is liquid water a hot quantum fluid? Anomalies of water in thin liquid films and in biological systems, Bull. Korean Chem. Soc. 24 (2003) 1211-1214. [Back]
  25. E. Meyer, Internal water-molecules and H-bonding in biological macromolecules - a review of structural features with functional implications, Protein Sci. 1 (1992) 1543-1562. [Back] [Back to Top to top of page]
  26. A. Khan, M. R. Khan, M. F. Khan and F. Khanam, A liquid water model: explaining the anomalous density variation of liquid D2O and shifting of density maximum under pressure, J. Mol. Structure (Theochem) 679 (2004) 165-170. [Back]
  27. W. Dzwolak and V. Smirnovas, A conformational α-helix to β-sheet conformational transition accompanies racemic self-assembly of polylysine: an FT-IR spectroscopic study, Biophys. Chem. 115 (2005) 49-54. [Back]
  28. M. P. Hodges, A. J. Stone and S. S. Xantheas, Contribution of many-body terms to the energy for small water clusters: A comparison of ab initio calculations and accurate model potentials, J. Phys. Chem. A 101 (1997) 9163-9168. [Back]
  29. F. H. Stillinger, Water revisited, Science 209 (1980) 451-457. [Back, 2]
  30. T. Yokono, S. Shimokawa, T. Mizuno, M. Yokono and T. Yokokawa, Clathrate-like ordering in liquid water induced by infrared irradiation, Jap. J. Appl. Phys. 43 (2004) L1436-L1438. [Back, 2, 3]
  31. B. J. Yoon and M. S. Jhon, Stability of the pentagon structure of water cluster, Bull. Korean Chem. Soc. 12 (1991) 67-70. [Back]
  32. H. Eyring and M. S. Jhon, Significant liquid structures, (John Wiley & Sons, New York, 1969). [Back]
  33. S. D. Hong and M. S. Jhon, Theoretical study on the role of water in anesthesia, Bull. Korean Chem. Soc. 7 (1986) 388-391; N. Kundacina, M. Shi and G. H. Pollack, Effect of local and general anesthetics on interfacial water
    PLoS ONE 11 (2016) e0152127. doi:10.1371/journal.pone.0152127. [Back]
  34. A. Khan, Solvated electron (H2O)20- dodecahedral cavity: calculated stretch frequencies and vertical dissociation energy, Chem. Phys. Lett. 401 (2005) 85-88. [Back]
  35. Y. I. Cho and S.-H. Lee, Reduction in the surface tension of water due to physical water treatment for fouling control in heat exchangers, Int. Commun. Heat Mass Transfer 32 (2005) 1-9. [Back, 2]
  36. E. V. Tsiper, Polarization forces in water deduced from single molecule data, Phys. Rev. Lett. 94 (2005) 013204. [Back, 2, 3, 4]
  37. T. S. Light, S. Licht, A. C. Bevilacqua and K. R. Morash, The fundamental conductivity and resistivity of water, Electrochem. Solid-State Lett. 8 (2005) E16-E19. [Back, 2, 3]
  38. (a) O. Teschke and E. F. de Souza, Water molecular arrangement at air/water interfaces probed by atomic force microscopy, Chem. Phys. Lett. 403 (2005) 95-101. (b) O. Teschke and E. F. de Souza, Water molecule clusters measured at water/air interfaces using atomic force microscopy, Phys. Chem. Chem. Phys. 7 (2005) 3856-3865. [Back]
  39. S. Ikeda, T. Takata, M. Komoda, M. Hara, J. N. Kondo, K. Domen, A. Tanaka, H. Hosono and H. Kawazoe, Mechano-catalysis - a novel method for overall water splitting, Phys. Chem. Chem. Phys. 1 (1999) 4485-4491. G. Hitoki, T. Takata, S. Ikeda, M. Hara, J. N. Kondo, M. Kakihana and K. Domen, Mechano-catalysis overall water splitting on some mixed oxides, Catalysis Today, 63 (2000) 175-181. [Back]
  40. T. S. Pennanen, J. Vaara, P. Lantto, A. J. Sillanpää, K. Laasonen and J, Jokisaari, Nuclear magnetic shielding and quadrupole coupling tensors in liquid water: A combined molecular dynamics simulation and quantum chemical study, J. Am. Chem. Soc. 126 (2004) 11093-11102. [Back]
  41. A. Grossfield, Dependence of ion hydration on the sign of the ion's charge, J. Chem. Phys. 122 (2005) 024506. [Back]
  42. A. Grossfield, P. Ren and J. W. Ponder, Ion solvation thermodynamics from simulation with a polarizable force field, J. Am. Chem. Soc. 125 (2003) 15671-15682. [Back]
  43. A. Salabat, L. Shamshiri and F. Sahrakar, Thermodynamic and transport properties of aqueous trisodium citrate system at 298.15 K, J. Mol. Liq. 118 (2005) 67-70. [Back]
  44. J. S. Delaney, Predicting aqueous solubility from structure, Drug Discovery Today 10 (2005) 289-295. [Back]
  45. J. Horita and D. R. Cole, Stable isotope partitioning in aqueous and hydrothermal systems to elevated temperatures, in Aqueous systems at elevated temperatures and pressures: Physical chemistry in water, steam and hydrothermal solutions, ed. D. A. Palmer, R. Fernández-Prini and A. H. Harvey (Elsevier, Amsterdam, 2004) pp. 277-319. [Back]
  46. J. L. Finney, Water? What's so special about it? Phil. Trans. R. Soc. Lond. B 359 (2004) 1145-1165. [Back]
  47. R. Martoñák, D. Donadio and M. Parrinello, Evolution of the structure of amorphous ice - from low-density amorphous (LDA) through high-density amorphous (HDA) to very high-density amorphous (VHDA) ice, J. Chem. Phys. 122 (2005) 134501. [Back, 2]
  48. Z. Burkus and F. Temelli, Rheological properties of barley β-glucan, Carbohydr. Polym. 59 (2005) 459-465. [Back]
  49. K. Umemoto and R. M. Wentzcovitch, Low -> high density tranformations in ice, Chem. Phys. Lett. 405 (2005) 53-57. [Back]
  50. M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser and R. J. D. Miller, Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O, Nature 434 (2005) 199-202. [Back, 2, 3] [Back to Top to top of page]
  51. B. J. Murray, D. A. Knopf and A. K. Bertram, The formation of cubic ice under conditions relevant to Earth's atmosphere, Nature 434 (2005) 202-204. B. J. Murray and A. K. Bertram, Formation and stability of cubic ice in water droplets, Phys. Chem. Chem. Phys. 8 (2006) 186-192. [Back]
  52. M. J. Hey, D. P. Jackson and H. Yan, The salting-out effect and phase separation in aqueous solutions of electrolytes and poly(ethylene glycol), Polymer 46 (2005) 2567-2572. [Back]
  53. M. Wada, H. Chanzy, Y. Nishiyama, and P.Langan, Cellulose IIII crystal structure and hydrogen bonding by synchrotron X-ray and neutron fiber diffraction, Macromolecules 37 (2004) 8548 -8555. [Back]
  54. (a) S. Klotz, Th. Strässle, R. J. Nelmes, J. S. Loveday, G. Hamel, G. Rousse, B. Canny, J. C. Chervin and A. M. Saitta, Nature of the polyamorphic transition in ice under pressure, Phys. Rev. Lett. 94 (2005) 025506. (b) C. A. Tulk, C. J. Benmore, D. D. Klug and J. Neuefeind, Comment on "Nature of the polyamorphic transition in ice under pressure", Phys. Rev. Lett. 96 (2006) 149601. (c) S. Klotz, Th. Strässle, R. J. Nelmes, J. S. Loveday, G. Hamel, G. Rousse, B. Canny, J. C. Chervin, and A. M. Saitta, Klotz et al. Reply: Phys. Rev. Lett. 96 (2006) 149602. [Back]
  55. E. G. Diken, J. M. Headrick, J. R. Roscioli, J. C. Bopp, M.A. Johnson, and Anne B. McCoy, Fundamental excitations of the shared proton in the H3O2- and H5O2+ complexes, J. Phys. Chem. A 109 (2005) 1487-1490. [Back]
  56. S. Klotz, Th.Strässle, A. M. Saitta, G. Rousse, G. Hamel, R. J. Nelmes, J. S. Loveday and M. Guthrie, In situ neutron diffraction studies of high density amorphous ice under pressure, J. Phys.: Condens. Matter. 17 (2005) S967-S974. [Back]
  57. (a) E. E. Fesenko and A. Ya. Gluvstein, Changes in the state of water, induced by radiofrequency electromagnetic fields, FEBS Lett. 367 (1995) 53-55. (b) M. Yamashita, C. A. Duffield and W. A. Tiller, Direct current magnetic field and electromagnetic field effects on the pH and oxidation-reduction potential equilibration rates of water. 1. Purified water, Langmuir, 19 (2003) 6851-6856. [Back]
  58. Z. S. Nickolov and J. D. Miller, Water structure in aqueous solutions of alkali halide salts: FTIR spectroscopy of the OD stretching band, J. Colloid Interface Sci. 287 (2005) 572-580. [Back, 2]
  59. G. Trombetta, C. Di Bona and E. Grazi, The transition of polymers into a network of polymers alters per se the water activity, Int. J. Biol. Macromol. 35 (2005) 15-18. [Back]
  60. I. Donati, S. Holtan, Y. A. Mørch, M. Borgogna, M. Dentini and Skjåk-Bræk, New hypothesis on the role of alternating sequences in calcium-alginate gels, Biomacromolecules 6 (2005) 1031-1040. [Back]
  61. Y. Yonetani, A severe artifact in simulation of liquid water using a long cut-off length: Appearance of a strange layer structure, Chem. Phys. Lett. 406 (2005) 49-53. [Back]
  62. G. Ling, What determines the normal water content of a living cell? Physiol. Chem.Phys. & Med. NMR 36 (2004) 1-19. [Back]
  63. T. Yagasaki, K. Iwahashi, S. Saito and I. Ohmine, A theoretical study on anomalous temperature dependence of pKw of water, J. Chem. Phys. 122 (2005) 144504. [Back]
  64. H. Whiting, A new theory of cohesion applied to the thermodynamics of liquids and solids, Harvard Physics PhD Thesis, (1884). Developed by (the discoverer of X-rays): W. K. Röntgen, Ueber die constitution des flüssigen wassers, Ann. Phys. U. Chim. (Wied) 45 (1892) 91-97. [Back]
  65. H. M. Chadwell, The molecular structure of water, Chem. Rev. 4 (1927) 357-398. [Back]
  66. J. D. Bernal and R. H. Fowler, A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. J. Chem. Phys. 1 (1933) 515-548. [Back, 2]
  67. (a) O. Ya. Samoilov, Zh. Fiz. Khim. 20 (1946) 1411. (b) M. D. Danford and H. A. Levy, The structure of liquid water at room temperature, J. Am. Chem. Soc. 84 (1962) 3965-3966; (c) A. H. Narten and H. A. Levy, Observed diffraction pattern and proposed models of liquid water, Science 165 (1969) 447-454; B. Kamb, Structure of water, Science 167 (1970) 1520-1521; A. H. Narten and H. A. Levy, Science 167 (1970) 1521. [Back]
  68. S. Aasland and P. F. McMillan, Density-driven liquid-liquid phase-separation in the system Al2O3-Y2O3, Nature 369 (1994): 633-636. [Back]
  69. G. C Vezzoli, F. Dachille and R. Roy, High-pressure studies of polymerization in sulfur, J. Polymer Sci. A-1 7 (1969) 1557-1566. [Back]
  70. Y. Katayama, Y. Inamura, T. Mizutani, M. Yamakata, W. Utsumi and O. Shimomura, Macroscopic separation of dense fluid phase and liquid phase of phosphorus, Science 306 (2004) 848-851. [Back]
  71. J. P. K. Doye, A. A. Louis and M. Vendruscolo, Inhibition of protein crystallization by evolutionary negative design, Phys. Biol. 1 (2004) P9-P13. [Back]
  72. R. Gruber, S. Axmann and M. H. Schoenberg, The influence of oxygenated water on the immune status, liver enzymes, and the generation of oxygen radicals; a prospective, randomised, blinded clinical study, Clin. Nutr. 24 (2005) 407-414. [Back]
  73. K. V. Zubowa, A. V. Zubow and V. A. Subow, Cluster structure of liquid alcohols, water and n-hexane, J. Appl. Spectroscopy 72 (2005) 300-307 (in Russian). [Back]
  74. C.-C. Wu, C.-K. Lin, H.-C. Chang, J.-C. Jiang, J.-L. Kuo and M. L. Klein, Protonated clathrate cages enclosing neutral water molecules: H+(H2O)21 and H+(H2O)28, J. Chem. Phys. 122 (2005) 074315. [Back]
  75. (a) C. Vega, E. Sanz and J. L. F. Abascal, The melting temperature of the most common models of water, J. Chem. Phys. 122 (2005) 114507; (b) C. Vega, J. L. F. Abascal, E. Sanz, L. G. MacDowell and C. McBride, Can simple models describe the phase diagram of water? J. Phys.: Condens. Matter 17 (2005) S3283-S3288; (c) R. G. Fernández, J. L. F. Abascal and C. Vega, The melting point of ice Ih for common water models calculated from direct coexistence of the solid-liquid interface, J. Chem. Phys. 124 (2006) 144506. [Back] [Back to Top to top of page]
  76. T. Takamuku, K. Saisho, S. Nozawa and T. Yamaguchi, X-ray diffraction studies on methanol-water, ethanol-water, and 2-propanol-water mixtures at low temperatures, J. Mol. Liq. 119 (2005) 133- 146. [Back]
  77. Y. F. Yano, Correlation between surface and bulk structures of alcohol-water mixtures, J. Colloid Interface Sci. 284 (2005) 255-259. [Back]
  78. F. Martin and H. Zipse, Charge distribution in the water molecule - A comparison of methods, J. Comput. Chem. 26 (2005) 97-105. [Back]
  79. A. J. Dingley and S.Grzesiek, Direct observation of hydrogen bonds in nucleic acid base pairs by internucleotide 2JNN couplings, J. Am. Chem. Soc. 120 (1998) 8293-8297. [Back]
  80. F. Cordier and S. Grzesiek, Direct observation of hydrogen bonds in proteins by interresidue 3hJNC' scalar couplings, J. Am. Chem. Soc. 121 (1999) 1601-1602. [Back]
  81. V. Mäemets and I. Koppel, Effect of ions on the 17O and 1H NMR chemical shifts of water, J. Chem. Soc. Faraday Trans. 94 (1998) 3261-3269. R. Li, Z. Jiang, H. Yang and Y. Guan, Effects of ions in natural water on the 17O NMR chemical shift of water and their relationship to water cluster, J. Mol. Liq. 126 (2006) 14-18. [Back, 2]
  82. N. Nestle, T. Baumann and R. Niessner, Oxygen determination in oxygen-supersaturated drinking waters by NMR relaxometry, Water Res. 37 (2003) 3361-3366. [Back]
  83. T. Tsukahara, M. Harada, H. Tomiyasu and Y. Ikeda, 17O Chemical shift and spin-lattice relaxation measurements of water in liquid and supercritical states by using high-resolution multinuclear NMR, J. Supercrit. Fluids 26 (2003) 73-82. [Back]
  84. G. Otting, NMR studies of water bound to biological molecules, Progr. Nucl. Magn. Res. Spectr. 31 (1997) 259-285. [Back]
  85. A. Oleinikova, P. Sasisanker and H. Weingärtner, What can really be learned from dielectric spectroscopy of protein solutions? A case study of ribonuclease A, J. Chem. Phys. B 108 (2004) 8467-8474. [Back]
  86. G. E. Walrafen, Raman and infrared spectral investigations of water structure, in Water A Comprehensive Treatise, Vol. 1 Ed. F. Franks, (Plenum Press, New York, 1972) pp. 151-214. [Back, 2]
  87. M. Papageorgiou, N. Lakhdara, A. Lazaridou, C. C. Biliaderis and M. S. Izydorczyk, Water extractable (1->3,1->4)-β-D-glucans from barley and oats: An intervarietal study on their structural features and rheological behaviour, J. Cereal Sci. 42 (2005) 213-224. [Back]
  88. M. J. Blandamer, J. B. F. N. Engberts, P. T. Gleeson and J. C. R. Reis, Activity of water in aqueous systems; A frequently neglected property, Chem. Soc. Rev. 34 (2005) 440-458. [Back]
  89. W. M. Latimer and W. H. Rodebush, Polarity and ionization from the standpoint of the Lewis theory of valence, J. Am. Chem. Soc. 42 (1920) 1419-1433. [Back]
  90. H. E. Stanley, S V. Buldyrev, G. Franzese, N. Giovambattista and F. W. Starr, Static and dynamic heterogeneitities in water, Phil. Trans. R. Soc. A 363 (2005) 509-523. [Back]
  91. A. Almond, Towards understanding the interaction between oligosaccharides and water molecules, Carbohydr. Res. 340 (2005) 907-920. [Back]
  92. (a) M. M. Koza, H. Schober, H. E. Fischer, T. Hansen and F. Fujara, Kinetics of the high- to low-density amorphous water transition, J. Phys.: Condens. Matter 15 (2003) 321-332. (b) M. M. Koza, B. Geil, K. Winkel, C. Köhler, F. Czeschka, M. Scheuermann, H. Schober, and T. Hansen, Nature of amorphous polymorphism of water, Phys. Rev. Lett. 94 (2005) 125506. [Back]
  93. S. Knez and C. Pohar, The magnetic field influence on the polymorph composition of CaCO3 precipitated from carbonized aqueous solutions, J. Colloid Interface Sci. 281 (2005) 377-388. [Back]
  94. (a) T. M. Raschke and M. Levitt, Nonpolar solutes enhance water structure within hydration shells while reducing interactions between them, PNAS, 102 (2005) 6777-6782. (b) G. Graziano and B. Lee, On the intactness of hydrogen bonds around nonpolar solutes dissolved in water, J. Phys. Chem. B 109 (2005) 8103-8107. [Back]
  95. Smithsonian Physical Tables, 9th Ed. (Knovel, New York, 2003). [Back]
  96. R. Moreh, R. C. Block, Y. Danon, and M. Neumann, Search for anomalous scattering of keV neutrons from H2O-D2O mixtures, Phys. Rev. Lett. 94 (2005) 185301. [Back]
  97. S. Arai, T. Chatake, T. Ohhara, K. Kurihara, I. Tanaka, N. Suzuki, Z. Fujimoto, H. Mizuno, and N. Niimura, Complicated water orientations in the minor groove of the B-DNA decamer d(CCATTAATGG)2 observed by neutron diffraction measurements, Nucl. Acids Res. 33 (2005) 3017-3024. [Back]
  98. H. Fukazawa, S. Mae, S. Ikeda and O. Watanabe, Proton ordering in Antarctic ice observed by Raman and neutron scattering, Chem. Phys. Lett. 294 (1998) 554-558; but a more-recent study on a different, younger, ice sample failed to show any proton ordering [1820]. [Back]
  99. Y. I. Cho, J. Lane and W. Kim, Pulsed-power treatment for physical water treatment, Int. Commun. Heat Mass Transfer 32 (2005) 861-871. [Back]
  100. (a) P. Vallée, J. Lafait, L. Legrand, P. Mentré, M-O. Monod and Y. Thomas, Effects of pulsed low-frequency electromagnetic fields on water characterized by light scattering techniques: Role of bubbles, Langmuir 21 (2005) 2293-2299. (b) P. Vallée, J. Lafait, P. Mentré, M-O. Monod and Y. Thomas, Effects of pulsed low-frequency electromagnetic fields on water using photoluminescence spectroscopy: Role of bubble/water interface, J. Chem. Phys. 122 (2005) 114513. [Back, 2] [Back to Top to top of page]

 

 

 

Home | Site Index | Site Map | Search | LSBU | Top

 

This page was established in 2005 and last updated by Martin Chaplin on 15 August, 2017


Creative Commons License
This work is licensed under a Creative Commons Attribution
-Noncommercial-No Derivative Works 2.0 UK: England & Wales License